
Volume:4 Issue:4, 1999

J a v a D e v e l o p e r s J o u r n a l . c o m

TM

SYS-CON
PUBLICATIONS

Widget Factory
JSpinner

by Claude Duguay pg.30

Reader Feedback
pg.53

JDJ News
pg.62

Straight Talking
Today Is a Good Day

by Alan Williamson pg.14

Product Reviews
HOW Pro Edition 2.0
by Ed Zebrowski pg.54

...
VisualAge for Java 2.0

by Niraj Jetly pg.48

SYS-CON Radio
Interviews from JBE
Lee Garrison & Alan
Armstrong, KL Group
Mike Merritt, Sybase

Don Roedner, Riverton
Host Chad Sitler pg.50

JDJ Feature: Climbing a JTree Mark Steenbarger
Displaying your business objects in a JTree 24

JSDA, CORBA & HAL-Based Mutechs Balaji Natarajan
Using distributed computing technologies to build on the internet 8

Parsing Command-Line Arguments Panos Kougiouris
Using an effective Java framework to write command line tools 20

Designing a Web Browser Pascal Ledru
Using Swing classes to create a better Web browser 54

Building a Tree Viewer Daniel Dee
Viewing hierarchical relationships graphically in Java 30

Clarify Your Code in the Gene Callahan & Robert Dodson

Functional Style
Employing your functional code directly in Java 58

Developing Cross Platform Applications Steven Gould

in Java Making “write once, run anywhere” a reality 36

From the Editor
What’s the Code?
by Sean Rhody pg. 5

JDJ APRIL SNEAK PREVIEW

2 • VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Oracle
www.oracle.com/info/27

3VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Protoview
www.protoview.com

4 • VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Schlumberger
www.cyberflex.slb.com

I remember the first time I saw Jurassic Park and watched as the little girl proceeded
to hack into a UNIX system, quickly taking control of the entire park. I couldn’t help but
laugh at how unlikely that whole scenario was, but it does serve to illustrate the way
many people think of programming. With this month’s focus on code and things related,
I thought it would be apropos to discuss what we do for a living.

Unlike the Hollywood stereotype, no programmer, however good, can simply take
control of a system. I’m sorry, but even if Jeff Goldblum was the greatest programmer in
the world, I doubt he could create a virus to crash the alien mothership. Yes, I’ve
switched movies, but stayed on my theme, though it may be hard to tell since Jeff was
in both. I guess to the movie crowd, Jeff Goldblum is everygeek – the nerdy computer
guy in all of us.

Sorry, it just doesn’t happen that way. You know it. I know it. But the long grind and
late hours that it takes to make a good program great just don’t make for good movies.
Imagine if we had a large-scale development team called in to write the virus for the
mothership – we’d all be fertilizer. That’s because there’s more to coding than code, and
there’s more to development than development.

Good coders aren’t born, they’re made. It takes education and practice to make a
good coder, as well as skill in logic and reasoning. Education provides the basic con-
cepts and theories; practice hones their use. It also helps if they have good tools.

I recently had the opportunity to speak with KL Group concerning their JProbe prod-
uct. JProbe is a thread and memory debugger and profiler for Java. It’s one of those tools
that can help a good programmer become a better one. Most of our IDEs have built-in
debuggers, and the use of these tools should be encouraged. But typically it’s hard to
see the flow of a program, particularly a multithreaded program, within a debugger.
JProbe provides another level of debugging help that will allow you to see what’s hap-
pening inside the JVM as a whole.

Other tools and utilities are also useful for coding. Each IDE product does different
things well. Some are better at two-way coding, some concentrate on integrating dis-
tributed computing models and some concentrate on being the best code editor there
is. Each fits a particular style of coding. Some coders are devoted to writing every line
of code themselves. Other coders prefer to have a tool do as much work as possible. Put
these people together in a room and you can get some interesting debates. I recently
gave a presentation concerning the project I’m on, and even though we’ve already
selected and used one IDE for over six months, one of the attendees wanted to know if
we’d considered the IDE he uses. That’s one of the funny things about coders – they’re
very territorial.

I also think that good, focused subject matter training is essential to being a good
programmer. We’re Java programmers, right? A good background in object-oriented pro-
gramming is essential, but there’s still a strong need to get familiar with the specifics of
Java, such as AWT and Swing. Work in a three-tiered system and you need to understand
RMI (or IIOP) and JNDI, as well as the way an application server works. Layer on top of
that a particular development framework (homegrown or purchased) and you should be
able to make a good case for training for anyone who joins the project.

I hope you enjoy this issue’s focus on code. While you’re reading this, I’m going to be
reconfiguring an old Cray to run Linux so I can access the mothership and get them to
let me fly one of those cool fighter planes. May The Force be with you.

About the Author
Sean Rhody is the editor-in-chief of Java Developer’s Journal. He is also a senior consultant with Computer
Sciences Corporation, where he specializes in application architecture – particularly distributed systems.
He can be reached by e-mail at sean@sys-con.com.

What’s the Code?

FROM THE EDITOR

Sean Rhody, Editor-in-Chief
EDITORIAL ADVISORY BOARD

Ted Coombs, Bill Dunlap, David Gee, Michel Gerin,
Arthur van Hoff, Brian Maso, John Olson, George Paolini,

Kim Polese, Sean Rhody, Rick Ross, Ajit Sagar,
Richard Soley, Alan Williamson

Editor-in-Chief: Sean Rhody
Art Director: Jim Morgan

Executive Editor: M’lou Pinkham
Managing Editor: Brian Christensen

Production Editor: Hollis K. Osher
Editorial Consultant: Scott Davison

Technical Editor: Bahadir Karuv
Product Review Editor: Ed Zebrowski

Industry News Editor. Alan Williamson
E-commerce Editor. Ajit Sagar

WRITERS IN THIS ISSUE
???, Gene Callahan, Daniel Dee, Robert Dodson,

Claude Duguay, Stephen Gould, Niraj Jetly,
Panos Kougiouris, Pascal Ledru, Balaji Natarajan,

Shrideep Pallickara, Sean Rhody, Rick Ross,
Mark Steenbarger, Alan Williamson, Ed Zebrowski

SUBSCRIPTIONS
For subscriptions and requests for bulk orders,

please send your letters to Subscription Department

Subscription Hotline: 800 513-7111
Cover Price: $4.99/issue

Domestic: $49/yr. (12 issues) Canada/Mexico: $69/yr.
Overseas: Basic subscription price plus airmail postage

(U.S. Banks or Money Orders). Back Issues: $12 each

Publisher, President and CEO: Fuat A. Kircaali
Vice President, Production: Jim Morgan
Vice President, Marketing: Carmen Gonzalez

Accounting Manager: Ignacio Arellano
Circulation Manager. Mary Ann McBride

Advertising Account Manager Robyn Forma
Advertising Assistant Megan Ring

Graphic Designers: Robin Groves
Alex Botero

SYS-CON Radio Editor Chad Sitler
Webmaster: Robert Diamond

Customer Service: Sian O’Gorman
Paula Horowitz
Ann Marie Milillo

Online Customer Service: Mitchell Low

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-7300 Fax: 914 735-6547

Subscribe@SYS-CON.com
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is

published monthly (12 times a year) for $49.00 by SYS-CON
Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Application to mail at Periodicals Postage rates is pending at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1999 by SYS-CON Publications, Inc. All rights reserved. No part of this
publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy or any information storage and retrieval system,

without written permission. For promotional reprints, contact reprint coordinator.
SYS-CON Publications, Inc., reserves the right to revise, republish and authorize

its readers to use the articles submitted for publication.

Worldwide Distribution by
Curtis Circulation Company

739 River Road, New Milford NJ 07646-3048 Phone: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks
of Sun Microsystems, Inc., in the United States and other countries.

SYS-CON Publications, Inc., is independent of Sun Microsystems, Inc.
All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
PUBLICATIONS

5VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

6 • VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Comp
Assoc

www.cai.com/a

7VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

puter
ciates

ds/jasmine/dev

8 • VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Distributed computing technologies for
building multiuser scalable televirtual

environments on the Internet

JDJ FEATURE

by Balaji Natarajan & Shrideep Pallickara

Java scripting support in VRML2/VRML97
set the stage for experimenting with multi-
user distributed virtual environments on the
Internet, hereafter referred to as televirtual,
or TVR, environments. A typical minimal con-
figuration of such a system would include a
few VRML2 browsers, downloading a com-
mon VRML world and opening Java node-
based connections to a collaborative server
that maps user input such as mouse motions
on suitable movements of the corresponding
avatars.

We developed a simple prototype TVR
environment of this type at Syracuse Uni-
versity’s Northeast Parallel Architectures
Center (NPAC), as part of a joint project
with IBM T.J. Watson, using the JSDA (Java
Shared Data Architecture) framework for
building Java collaborative services.

Several prototype TVR environments of
a similar type have been developed by
groups such as Sony, Paragraph (Mitra),
BlackSun and MERL, and a set of VRML SIGs
was formed, including Universal Avatars,

Humanoid Animation and Living Worlds,
which focused on standardizing various
aspects and software layers of VRML-based
networked VR.

The detailed architecture of collaborative
servers has not been addressed directly by
the VRML community. For example, Living
Worlds encapsulates various multiuser tech-
nologies in terms of a Mutech (multiuser
technology) node and focuses on its interac-
tions with local/client-side VRML nodes in
the scene graph. There are some associated
ongoing standards efforts in the Mutech
domain. For example, Open Community led
by Mitsubishi Electric Research Labs (MERL)
released an open standards proposal.

In the VRML community framework, we
can express our work and the content of
this article as research into promising
Mutech technologies based on stable open
standards and capable of enabling or facili-
tating the design or development of truly
scalable TVR environments.

We are exploring the following collabo-

rative server technologies of rele-
vance for TVR within the ongoing
R&D activities at NPAC:
• JSDA from JavaSoft
• CORBA objects and Event Services
• HLA/RTI (High Level Architecture/Run-

time Infrastructure) by DMSO (Defense
Modeling and Simulation Office)

In this article we examine the CORBA
domain and discuss the relationship
between VRML and the emergent distrib-
uted object technologies.

TVR Front-End Description
Our current TVR prototype has two ver-

sions of the VRML+Java front end: one is
based on Script Nodes; the other, on the
External Authoring Interface (EAI).

JSDA, CORBA
and HLA-Based

Mutechs

9VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journal

The EAI version of the prototype was
tested on SGI’s CosmoPlayer (version
1.0.2), running as a plug-in to the Netscape
3.0 Web browser on a PC platform. The
Script Node version of the prototype was
tested on Sony’s Community Place, running
as a plug-in to the Netscape 3.0 Web brows-
er, and also SGI’s CosmoPlayer (1.0 beta
3a), running as a plug-in to Netscape 3.0.

Our current “world” metaphor is given

by a set of rooms with avatars represented
by simple geometrical objects (such as col-
ored cones). We’ve added realism in terms
of more humanlike avatars with custom
behaviors, conforming to the specifica-
tions of the Humanoid Working Group
Proposal. We’re also exploring add-on
audio-conferencing capability using
commodity APIs like Microsoft Net-
Meeting.

TVR Back-End Description
JSDA provides a shared

framework for Java at the data
level. Data objects are shared
over specific instances of
channels (broadcast com-
munication paths) between
two or more clients

(objects that are the source or destination of
data) in a collaborative environment. Any
client object that needs to register its inter-
est in receiving messages sent over a channel
must implement the Channel Consumer. Sim-
ilarly, if a client is interested in being notified
about changes in the state of some other
object, it should implement the Channel
Observer interface. To register interest in a
certain channel, a client first needs to join

the session that hosts this channel and then
can join the channel.

JSDA allows objects to be shared using
object serialization mechanisms since it
has RMI-based implementation. JSDA also
has objects that encapsulate management
policies for application objects. One exam-
ple is the Session Manager, which authenti-
cates clients to determine whether they can
join a session. Currently, JSDA is a research-
oriented API at JavaSoft Corporation and
our TVR prototype is being packaged as an
effective demonstration of JSDA’s capabili-
ties, along with the main distribution.

Toward Multiserver JSDA
Environments

Figure 1 illustrates a more complex TVR
world (currently under development at

NPAC) that includes n avatars in m rooms
where both n and m can be large (Internet
clubs, malls, etc.). Rooms are mapped to
sessions (1, 2, etc.) running on individual
servers. Each room/session publishes local
sensory channels used to exchange coordi-
nate/visual information between avatars in
this room. Some rooms can also publish
long-range channels (e.g., audio) that are
accessible from other rooms.

Figure 1 shows an avatar moving from
room 1 to room 2. It detaches from the
room 1 visual/sensory channel and attach-
es to the room 2 visual/sensory channel
and retains the radio channel to listen to
news/ads broadcast from room 1. JSDA ses-
sions are mapped on “rooms” and JSDA
channels are assigned to individual avatars
present in a given room. Only a limited
number of avatars are allowed per room,
and the number of sessions per collabora-
tive server is also limited. This simple
model assures worldwide scalability,
assuming that new rooms join with their
own session servers and that most interac-
tions are local.

Toward CORBA-Based
Collaborative Environments

JSDA is a useful framework for prototyp-
ing simple collaborative applications, but it
doesn’t offer either a wire protocol or a
high-level API for client/server communica-
tion; messages are typically passed as
strings, custom encoded/decoded by JSDA
clients/servers. The family of T12x proto-
cols (which in fact influenced the JSDA
design and was adopted by Microsoft’s Net-
Meeting) could be a natural candidate for a
TVR protocol. Another possibility is that
such a protocol would be developed in the
course of current interactions between
MPEG-4 (Moving Picture Experts Group)
and VRML streaming groups. However, a
tempting alternative would be to select one
universal wire protocol for the Internet that
would be capable of supporting all required
communication patterns in all relevant
application domains.

At the moment, the most promising can-
didate for such a lingua franca on the Web
is the Internet interoperability protocol
(IIOP) by OMG that enables interoperation
between ORBs from various vendors and is
also frequently used as internal inter-ORB
protocol between clients and servers with-
in a single-vendor CORBA environment. In
the 100% Pure Java sector, similar support
is offered by RMI (in fact, it is supported as
one of the JSDA implementation modes),
whereas CORBA offers both multiplatform
and multilanguage support in terms of the
universal IDL interfaces/mappings and lan-
guage-specific bindings. With the onset of

ORBlets, dynamically downloadable or res-
ident in Web browsers such as those sup-
ported by Netscape/Visigenic, CORBA now
gets even more tightly integrated with Java
toward a new, powerful computing para-
digm often referred to as Object Web.

To operate in today’s heterogeneous
computing environments, distributed appli-
cations must work on a plethora of hard-
ware and software platforms. Suitability to
business class applications calls for capa-
bilities beyond conventional Web-based
computing – scalability, high availability,
performance and data integrity. This is
where Java and CORBA complement each
other: Java provides for easier distribution
of CORBA-based applications that have the
wherewithal of a distributed infrastructure.

Java–CORBA Combination
Java’s multithreading support encour-

aged developers to write Web-based dis-
tributed software based on proprietary
server protocols. Each such server can be
viewed as a specific remote computational
object. On the other hand, CORBA offers
generic support for such server objects
based on distributed object technology.

Instead of encoding low-level messages,
sending them through the network and
decoding them at the receiver side, the pro-
grammer just calls an appropriate high-
level method on a distributed object with-
out the need for any specific low-level net-
work programming. This high-level abstrac-
tion capability is definitely a promising
framework for future distributed solutions.
The only two alternatives that can be
viewed as competitive are Java RMI and
Microsoft DCOM – but only CORBA is both
language- and platform-independent.

However, rather than a competitor or
alternative to CORBA, Java is now viewed
by many as a complementary technology
that forms a perfect match with CORBA
within the emergent “Object Web” trends.
In a nutshell, the master plan of the Object
Web (supported by Netscape, Oracle, IBM,
Sun and others) is to implement CORBA
control; that is, the middleware layer
(including ORBs and some core services) in
Java.

Since Java has an inverse mapping to
IDL, a programmer can stay in the Java
environment during the software develop-
ment. Java–CORBA implementations can

run on thin network computers and low-
end consumer devices because of their low
complexity and footprint. Java’s mobile
byte code and CORBA’s Dynamic Invocation
Interface (DII) simplify upgrades of clients’
software in large distributed systems. The
Java and CORBA combination truly provide
the right building blocks for distributed
object computing: (1) platform indepen-
dence, a strong security model, etc., in the
Java language; and (2) static and dynamic
interfaces, and synchronous and asynchro-
nous method calls with the comprehensive
set of facilities and services in CORBA.

These factors might result in the
CORBA–Java combination’s assuming a
central role in shaping the Internet during
the next phase of its evolution. Such emer-
gent Object Webs could have impact in sev-
eral areas, including multiuser collabora-
tive environments.

In particular, the collaborative environ-
ments can be naturally addressed by
CORBA in terms of the Event Service – one
of the standard 15 services developed and
sustained by OMG (together with Security,
Persistence, Concurrency, Naming, LifeCy-
cle, Relationships, Trading and other such
fundamental object services). The follow-
ing sections describe the CORBA Event Ser-
vice, which offers functionality similar to
the JSDA Channel discussed above.

CORBA Event Service
The Event Service (ES) (see Figure 2)

allows for decoupled communication
between objects. Instead of a client’s direct-
ly invoking operation on a target object, it
can send an event that can be received by
any number of objects. The sender of an
event is called a supplier, and the receivers
are called consumers. Suppliers and con-
sumers are decoupled; that is, they don’t
know each other’s identities.

The ES introduces the notion of Event
Channel. Suppliers send events to an Event
Channel and consumers receive these
events. Each channel can have multiple
consumers and suppliers, and all events
sent by a supplier are made available to all
consumers of that channel.

The ES supports four different modes of
consumer–supplier interactions. The con-
sumer could be a push/pull Consumer, and
the supplier could be a pull/push Supplier.
One advantage of using the Event Channel
is that the events can be buffered to accom-
modate consumers of differing speeds. Sup-
pliers and consumers both register with the
Event Channel; otherwise it isn’t possible
to determine the source of the event should
the supplier not be able to invoke the
appropriate notification method onto the
consumer.

Supplier objects request an appropriate

http://www.JavaDevelopersJournal.com10 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 4 1999

Figure 1: JSDA-based TVR

Clients

Channels Channels

Clients Clients

Avatars

Receptors

Rooms

Long Range
(e.g. radio)

Session 2 Session 2

Short Range
Sensory

Channel Consumers
Channel Observers

Session 1

Figure 2: CORBA Event Service

Proxy
Consumer

Push

Pull

Proxy
Supplier

Push

Pull

Push
Supplier

EventChannel

Direction of
Event Transfer

Push
Consumer

Pull
Consumer

Pull
Supplier

Push
Supplier

Push
Consumer

Pull
Consumer

Pull
Supplier

11VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

EnterpriseSoft
www.enterprisesoft.com

http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal12

ProxyConsumer object from the Event
Channel’s ConsumerAdmin object. When-
ever the supplier wants to send an object to
the Event Channel, it uses the correspond-
ing ProxyConsumer object. Similarly, con-
sumer objects ask an appropriate Proxy-
Supplier object from the Event Channel’s
SupplierAdmin object. Whenever a channel
receives an event, it informs all the Proxy-
Supplier objects. Each proxy object then
notifies its consumer.

CORBA-Based Collaborations
So far, in our work on CORBA-based col-

laborations, we have developed an initial
API for CORBA-based collaboration. The IDL
definition of this API is given in the following
section. A prototype version of this API,
using CORBA objects as “shared data,” and
CORBA servers as “collaborative servers”
and Netscape/Visigenic-based ORBlet front
ends, has been developed at IBM.

We are currently extending this design
and preparing a refined implementation
using CORBA Event Service, which plays an
event-filtering role similar to that of the
JSDA Channels (see Figure 3).

These are the two most significant IDL
definitions in the Collaborative System. The
IDL definitions signify the operations a
client can invoke on a remote instance of
these objects. Nevertheless, invocation of
any of these previously mentioned opera-
tions should be preceded by the successful
reception of a remote handle to these
objects. Acquisition of a handle to the Par-
tyCoordinator requires the client to invoke
a bind to that object. To digress on the
semantics of the bind, it should be clear
that in a high-availability scenario there
would be multiple instances of the Par-
tyScheduler with a static hashtable con-
taining the list of updated Parties; that is,
Coordinator Objects (see Listing 1).

Elucidating further on the semantics of
operations on these remote objects, the
PartyScheduler is the one that schedules
the appropriate instance of the Coordinator
Object to coordinate clients logged onto a
specific session (Party) composed of differ-
ent possible applications. Basically, the Par-
tyScheduler is responsible for spawning
instances of the Coordinator, possibly
across a different subnet, and also for
returning a remote Coordinator handle to
the client. A brief description of the
sequence of operations in the Collaborative
System follows.

The client initiates a bind to the Par-
tyScheduler Object. If this is successful,
and if there is a Distributed Directory ser-
vice and the Active Object server is in
place, the client is now ready to invoke the
IDL-defined operations.

It starts with the createParty(String par-

tyName) function, which would return a
true in the event that a new Coordinator
Object has been instantiated or a false to
signify the prior existence of the desired
party. It is the Scheduler’s job to signal the
appropriate notification to the clients and
perform appropriate housekeeping to
reflect new instances of Coordinators. All
Coordinator objects scheduled by the Par-
tyScheduler are identified by an ID.

The client now has the option of decid-
ing whether to join an existing Party or ini-
tiate a new one. In the latter case, the first
step is repeated, as mentioned earlier. Once
the process is over, the client gets a handle
to the Coordinator Object by invoking long
getPartyID(in string arg0); MultiCoordina-
tor::Coordinator getPartyHandle(in long
arg0); in succession. This is in keeping with
the policy of the PartyScheduler to identify
Coordinators on the basis of the ID that it
assigns during their instantiation.

Once the first two steps are over and
done with, the client in a Distributed Col-
laboration mode can invoke operations
specified in IDL definitions for the Coordi-
nator. These include Boolean broadcast (in
string arg0) and Boolean whisper (in string
arg0, in long arg1); among other functional-
ities offered by the PartyCoordinator
Object.

This is just another demonstration of
the complementary roles Java and CORBA
can play in distributed environments. Java
provides for easier distribution of CORBA-
based applications, with CORBA providing
what is necessary for a distributed infra-
structure. To summarize, CORBA offers
both a potential candidate for universal
wire protocol – IIOP – and a natural collab-
orative framework based on shared CORBA
objects and flexible message-filtering mech-
anisms offered by the Event Service.

Scalability and Fault Tolerance in
Collaborative Systems

Scalability and fault tolerance, the
essential features required in Collaborative
Systems, can be naturally addressed in the
CORBA model. The replication of servers on
different participating hosts in a collabora-

tive environment answers the scalability
problem when the load (participating ses-
sions) on a server crosses a certain thresh-
old. The current API supports two different
approaches. The notion of groups within a
certain session allows us to define one
object for each group and easily place these
objects on different machines. It is also pos-
sible to split the Event Channel if it exceeds
a certain capacity and connect two Event
Channels to each other as supplier and con-
sumer since one Event Channel can be a con-
sumer/supplier of another Event Channel.

Fault tolerance in Collaborative Systems
can be solved by migrating sessions to a dif-
ferent participating host with minimal or
little disruption whenever the machine
hosting the server crashes. The ObjectSer-
vices agent, which is a Distributed Directo-
ry service, allows for migration of sessions
to a different participating host in case a
session terminates unexpectedly on one of
the hosts. The events can be stored persis-
tently by the Event Channel to ensure that
they are not lost because of system failures.

Using CORBA Event Service for
Message Broadcasting

At NPAC we implemented the Event
Service for omniORB2, a free C++ Object
Request Broker under development by
Olivetti and Oracle Research Labs. We
wrote the standard Event Service with
C++ and omniThread thread library. We
tested this software with a chat program
using Netscape 3.0 with OrbixWeb-based
ORBlets.

We also started exploring the issues
related to using CORBA Event Service for
Distributed Interactive Simulation (DIS)
PDU broadcasting and for HLA/RTI support.
Some additional services are required to
support event handling in a multiuser envi-
ronment. For example, Event Service does-
n’t care about the originator of the event.
But for a multiuser environment, we need
to know who sent the message. DIS PDU for-
mat includes this information in its own
body. The ES is a central server-based
approach compared to peer-to-peer archi-
tectures. We can solve this problem by pro-
viding an Event Channel for each active
object in the virtual environment.

For large-scale interactive simulations, it
is imperative that we support event filter-
ing to adjust the frequency of events
received from the supplier. The obvious
choice is to make this decision a responsi-
bility of Event Channel so the messages are
handled before they are put on the net-
work. Event filtering could be based on
time stamping. However, this simple solu-
tion has a profound problem with synchro-
nizing time values in distributed simula-
tions. The best-known solution is to add the

Figure 3: Event Service-based
Collaboration Framework

Client

Client

Client
Scheduler

Client
Scheduler

Party
Coordinator

EventChannel EventChannel

Client

Client

13VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

NetBeans
www.netbeans.com

Java DEVELOPER’S Journal14 • VOLUME: 4 ISSUE: 4 1999 http://www.JavaDevelopersJournal.com

Global Virtual Time (GVT) calcula-
tion to the system so that mes-
sages that are out of order can be
handled properly with the roll-
back mechanism. GVT calculation
allows us to release the storage for
the logged events since nobody
expects to receive an event time-
stamped earlier than the current
GVT.

Another intriguing option for
message transfer is to use multicas-
ting. This requires some changes in
the ES implementation. For Push-
Consumer, instead of giving a sepa-
rate PushSupplier for each con-
sumer, it is possible to give one
PushSupplier for each multicast
group so that multicast PushSuppli-
er can serve multiple consumers.
This change also reduces the com-
putation requirement on the Event
Channel server.

Several advanced event-handling fea-
tures are currently in the OMG standardiza-
tion pipeline in the form of the CORBA Noti-
fication Service. New capabilities include
support for Quality of Service, integration
with Transaction and Security Services and
a more flexible user-adjustable format for
event objects.

Emerging Collaborative Server
Technologies Based on Distributed
Object Technology

Experiments with Java and CORBA-
based collaborations previously described
represent our first initial steps toward sys-
tematic Object Web support for HLA-based
modeling and simulations.

HLA is a next-generation framework for
distributed simulation systems promoted
by DMSO to replace the current DIS stan-
dard. HLA’s enabling middleware (RTI) is
based on distributed object technologies.
DMSO is promoting HLA/RTI within the
OMG toward a vertical CORBA facility for
interactive modeling and simulation.

At NPAC we have been working with the
DOD’s High Performance Modernization
program to integrate advanced Web-com-
modity technologies with large-scale Forces
Modeling and Simulation systems being
converted to or already based on HLA by
DMSO and the enabling RTI middleware.

As part of this project, we are building
an Object Web-based implementation of
IIOP and HTTP server called JWORB (Java
Web Object Request Broker) and the Object
Web-based RTI layer that will operate on
top of JWORB to provide Web-based simu-
lation support for HLA and a natural linkage
to front-end technologies such as VRML.
For large, geographically distributed M&S
systems, middleware must be given by a

mesh of scalable collaborative servers
running on heterogeneous platforms and
supporting specific simulation compo-
nents written in various languages. A
Java–CORBA-based RTI middleware such
as JWORB with a VRML front end seems to
offer an attractive pervasive architecture
for such systems.

Of particular interest within the DOD
M&S systems are the simulation-based
acquisition or virtual prototyping environ-
ments in which new systems are engi-
neered and tested in virtual space before
the first real prototype is manufactured.

Figure 4 illustrates a sample of such a
system with JWORB-based middleware and
a collection of front ends, including XML-
based data analysis, Java-based data flow
visual authoring software and VRML-based
visual 3D display. Each of these activities
can be made collaborative via the base RTI
mechanism, CORBA Event Service or JSDA,
and they can all cooperate via the JWORB-
based componentware.

Summary
We’ve discussed here a set of promising

distributed computing frameworks – JSDA,
CORBA, RTI – that offer open standards
based on support for building scalable
multiuser virtual environments on the
Internet. The essential feature of such an
environment – communication locality – is
enabled via event filtering in terms of JSDA
channels, CORBA Event Service and RTI
routing spaces.

So far, we’ve acquired a few early proto-
typing experiences using JSDA and CORBA
technologies, and are now exploring the
HLA/RTI environment. In the JWORB mid-
dleware framework currently under devel-
opment, we’ll be able to integrate, experi-

ment with and conduct comparative analy-
sis of all three collaborative technologies
discussed here: JSDA, CORBA and
HLA/RTI.

References
Syracuse University/IBM Technical Report

on Prototype for Scalable TeleVirtual
Environments for the Web.

D. Harkey and R. Orfali (1997). Client/Serv-
er Programming in Java and CORBA.
Wiley.

S. Baker (1997). CORBA Distributed
Objects, Addison-Wesley/ACM Press.

J.O. Calvin and R. Weatherly (1996). “An
Introduction to the High Level Architec-
ture(HLA) Runtime Infrastructure (RTI).”
March, 14th DIS Workshop, 96-14-103.

D.C. Miller (1996). “The DOD High Level
Architecture and the Next Generation of
DIS.” March, 14th DIS Workshop, 96-14-
115.

K.L. Morse (1996). “Interest Management
in Large-Scale Distributed Simulations.”
University of California, Irvine. Informa-
tion and Computer Science Technical
Report, ICS-TR-96-27.

About the Authors
Balaji Natarajan has a master’s degree in computer
engineering from Syracuse University. He is
currently a graduate research assistant at
Northeast Parallel Architectures Center (NPAC) at
Syracuse University in New York. You can e-mail
Balaji at balaji@npac.syr.edu.

Shrideep Pallickara is a Ph.D. candidate in computer
engineering at Syracuse University and a graduate
research assistant at NPAC. You can e-mail Shrideep
at shrideep@npac.syr.edu.

balaji@npac.syr.edu shrideep@npac.syr.edu

OMDT

Prototyping Models Analyzing Simulation Results

SOMSOM

histogram

dm e series

CAD
OMDD
CMMS

RTI RTI

DOM

LOG
GROUND

TRUTH

OML
MSRR

XML

RDF

FOM

Another (Air Force)

Another (Navy) Lab
Mississippi

Ohio

JWORB

JWORB

JWORB

JWORB

WebFlow Editor
DCOM

JWORB

CORBA CORBA

CORBA

HTTP+IIOP+DCE

HTTP+IIOP+DCE

Figure 4: Framework for virtual prototyping environment

15VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Intuitive
www.optimizeit..com

Java DEVELOPER’S JournalJava DEVELOPER’S Journal16 • VOLUME: 4 ISSUE: 4 1999 http://www.JavaDevelopersJournal.com

Just in case you don’t know, I love Java.
This month was a good month for loving
Java. Some months, I have to confess, one
does curse the little guy, but this month he
was standing tall. Nothing of particular note
happened in the media world, but it was
something we did that made us sit back and
be glad we chose this crazy Java world to
try and make some pennies. But more on
that later...I have a column to write.

How Are We All?
Are we doing well? I do hope so. It’s

springtime and the wee flowers are just
rolling over from their winter nap, looking
forward to a joyous summer. Isn’t spring a
wonderful time of year? We’re coming out
of winter and we can look back and see
what riches the colder months have
brought us, and have a guess what the
warmer months are going to be offering.

This column is the last roadstop of con-
troversy on the superinformation highway.
The purpose of this column is to make you
think. I’m not out to change your views, or
even push my opinions on you. What I write
you probably won’t agree with, and this is
good. This stimulates the brain and gets
people talking. I want to unite people and
get us all talking about various different
topics. ’Tis why I drop a little variance into
the column every so often. I want to anger
some of you. I want to hear your views on
subjects and if I have to push your morality
a little to do so, then so be it.

Each month, you fill my inbox with e-
mail and this is wonderful. I love debating
issues with you all and on the way I learn
more about the type of reader who reads
this column. Do you have any idea the
diversity of characters that pick up this
journal? The one fact that amazed me was
that you’re not all Java developers. In fact,
many of you have never coded a single line
of Java in your lives and probably never
will. So for a developer’s journal this is
good – means we’re reaching a much wider
audience.

I’ve had readers take this column to bed,
much to the joy of their wives; I’ve had peo-
ple reading on a plane; I even had a couple

of people who read me while on the toilet
(which for some strange reason makes me
feel violated!). The diversity was there. But
one person started me thinking of how to
further unite these people. I was in deep
dialog with one Miles Parker. Miles was
putting forward some fantastic points and
we thoroughly enjoyed debating the issues
between us. But I was frustrated because I
wanted some of my colleagues to be
involved in this conversation as they would
have had an awful lot to contribute.

It was then that I decided to create a
mailing list dedicated to this column and
the issues it brings up. I wish now to for-

mally invite you all to join. It’s not a spam
list, and we don’t abuse your e-mail
address. It’s just some good, clean conver-
sation. To join, send an e-mail to
listserv@listserv.n-ary.com with subscribe
straight_talking-l in the body of the e-mail.
From there you’ll get instructions on how to
participate. I will no longer be debating
issues on personal mail. If you have a point
to raise, join the list and we can all talk
around it. I look forward to “seeing” you
there.

What Did Winter Bring Us?
The most notable addition to our lives

was the official release of Java 2.0 just
before Christmas. Along with Java 2.0 came
a whole host of new APIs that finally made
it out of the beta phase. The Servlet API got
a major upgrade to version 2.1. The Java
Communications API made it out into the

wide world. The new Apple G3 platform was
released, promising much for the support
of Java natively. On the whole, not a bad
winter.

Summertime plays host to JavaOne in
San Francisco. I’m sure a number of new
technologies will be released in that one
special Java week. I’ll be making my annual
pilgrimage over the Atlantic to attend, and I
hope to meet some of you there.

Speaking of San Francisco, I read the
other week that it was voted the most con-
nected Net-friendly city in the world, for the
third or fourth year running. Please! Did
that come as a big shock to anyone? I sus-
pect not. San Francisco, or to be more pre-
cise the Bay area, plays host to the majori-
ty of the shakers and makers in our indus-
try. It’s like voting for the city with the best
Empire State building! A bit pointless,
methinks!

Love Is in the Details
I opened this month’s rant with a para-

graph hailing our love for the little guy. I
guess I better explain why. Well, we’re close
to shipping our flagship product, n-formant.
This is a Java application that monitors the
performance of servers, alerting via
phone/e-mail/fax should a problem arise.
The Java application hosted a number of
modules including a Web server that pro-
vided an intranet-style administration sec-
tion controlled by a number of Java
servlets. The application was quite a com-
plex system, with a number of core tech-
nologies that allowed us to generate voice
and fax calls. We bundled everything up
into nice, small, maintainable JAR files.

Now, my first point of love is the JAR for-
mat. Aren’t these just gifts from heaven?
Much cleaner than DLLs and far easier to
upgrade. Let me illustrate the foundation of
our love with this problem. Our product, n-
formant, ships as a complete hardware/soft-
ware solution. As a company we made the
decision to offer free upgrades. This meant
we weren’t supporting x different versions
of the software. But it did give us a little
headache on how we were going to ship the
upgrades. Sure, the Web site would be uti-
lized for this, but that would necessitate
someone regularly checking the site for new
versions. We figured out that if anything

Today Is a Good Day

STRAIGHT TALKING

Giving thanks for Java

by Alan Williamson

“The most notable

addition to our lives was

the official release of Java

2.0 just before Christmas.

…On the whole, not

a bad winter!”

17VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Inetsoft
www.inetsoftcorp.com

http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal • VOLUME: 4 ISSUE: 4 1999

needed upgrading, it would be one of the
core JAR files we built.

So we built a generic automatic upgrade
class that would periodically check a
known site for a newer version and, if
found, download and install it. Now the
installation part was no more complicated
than copying a single file. We would flag the
administrator that a change was about to
be made, and give them the change to yea
or nay it. If the update was a small change
or bug fix, then we could do this without
alerting the client to the problem area. A
system that would update itself! A wonder-
ful idea, and one we can’t take full credit for.
We got the idea when the RealPlayer soft-
ware decided to throw up a dialog box on
my desktop one day indicating that a newer
version was available and would I like to
upgrade. With a single click of a button it
downloaded the necessary upgrade, did
the upgrade and restored my session back
to normal. I was impressed. I thought, What
a wonderful way to update our software!

By packaging our software in a JAR file,
we could easily download the small file and
restart that part of the system to allow the
virtual machine to reload the classes with-
out having to shut down or restart the
whole system. A perfect solution. So, to the
person who came up with the JAR file for-
mat, we salute you.

My tip is thus: don’t go packaging up the
whole class tree into one big JAR file. Try to
break it down into small, logical units. Of
course, this all depends on the target appli-
cation. If you’re coding a small applet, then
sure – I can see where one JAR file is good.
But if you’re doing large deployment appli-
cations, then have a wee think about the
structure of your JARs before you start pro-
ducing 1 MB size .JAR files.

Getting to Know You
As indicated earlier, I’m all for knowing

more about you – more about the person
who picks up this column to read. To this
end, a number of months ago I developed a
simple voting servlet for our Web site that
collates your views on a number of issues.
The first month, I asked: “Was Sun correct
to rename Java 1.2 to Java 2.0?” The results
for this one were rather interesting: 51% of
the total votes said they were correct. So it
was cut cleanly down the middle as to the
move of version number. Each month a new
poll goes live on the Web site (www.n-
ary.com/consultancy/), so check back and
let us know your views.

Another recent question was: “Do you
still find Java applets to be slow in execu-
tion?” This proved to be a bit more deci-
sive. At this writing 70% of the voters
believe that applets are still slow to run.
Which is surprising, really, considering the

amount of work that has been done to
improve this state. But at the end of the
day, when you have a 450 MHz running an
applet the speed of a 33 MHz machine run-
ning Windows 3.1, you have to sympathize
with the masses. Java 2.0 hasn’t really made
any significant improvement on this. But
more on Java 2.0 in next month’s column,
when I’ll look at another aspect of Java that
has made us thankful….

April Book Review
This month’s book review comes to you

with the letter “C” and the color pink –
sorry, had a Sesame Street moment there.
The book that has captivated me this
month is Customers.com, penned by Patri-
cia B. Seybold. This book looks at how the
big companies have embraced the Web and
how they have made it work for them. It is
a good book for companies that are think-
ing about expanding their Net presence and
discovering what they need to do to bring
their customers closer. However, one of the
problems with any Net presence is getting
people to visit. Smaller companies simply
don’t have the brand recognition to pull in
hordes of visitors to their site. Therefore, a
significant amount of their marketing bud-
gets have to be deployed to raise the profile
of their URL. This is an area I feel a lot of
analysts have missed when talking about
the billions to be made on the Net with e-
commerce. Sure, local traders can suddenly
start trading on the Net without too much
hassle, but they aren’t going to see the sort
of sales growth that has been evangelized
without investing serious money in external
brand marketing. Which sort of goes
against the grain of the low overhead of the
virtual shop.

The days of getting thousands of people
to come to your site just because you have
a Java applet running are long gone. Who
remembers the early Yahoo submission
forms, where they asked if you had Java
running on your site? This was supposed to
increase your rating within the Yahoo
indexing system. Looking back at it now
seems quite amusing.

One wonders what systems we have
today that will provide a chortle in a few
years. I think this is what we’ll look at next
month. So stay tuned....

About the Author
Alan Williamson is CEO of n-ary (consulting) Ltd. A
Java consultancy company with offices in Scotland,
England and Australia, they specialize solely in Java
at the server side. Alan is the author of two Java
Servlet books and contributed to the 2.1 Servlet API.
He can be reached at alan@n-ary.com (www.n-
ary.com).

alan@n-ary.com

GET
YOUR
OWN!

GET
YOUR
OWN!

GET
YOUR
OWN!

$3999one
year

two
years

$6999

1800-513-7111
$69 one year Canada/Mexico

$99 one year all other countries

12 issues

24 issues

or subscribe online for faster service
subscribe@sys-con.com

Subscribe today and receive
“JDJ Digital Edition” FREE!

save
$30!
save
$10!

19VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

4th Pass
www.4thpass.com

http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal20 • VOLUME: 4 ISSUE: 4 1999

One of Java’s great appeals is that the lan-
guage provides out-of-the-box GUI develop-
ment capabilities. Still, a lot of us use Java to
write command line tools. Such tools are
great to automate batch and offline process-
es. This article presents a framework that
jump-starts the development of such tools.

Command line tools are usually invoked
from a shell (e.g., DOS prompt, sh, ksh, etc.)
and perform a certain task. The task can be
customized based on the command line
arguments. For instance:

telnet foo.bar.com

attempts to open a telnet connection to host
foo.bar.com. It uses the default telnet port.
The next example:

telnet –p 3434 foo.bar.com

attempts a similar connection using port
3434.

Command line tools can be as simple or
as complicated as the developer desires. An
example of a simple command line tool is
the echo command found in most shells. On
the other hand, the Java compiler and the
Java Virtual Machine (JVM) are complex
command line tools.

Java presents the command line argu-
ments in an array of strings. This is already
a huge improvement over C and C++, in
which the arguments are presented as an
array of C strings, i.e., an array of pointers to
arrays of characters. Yet it comes short of
the developer’s desire to get the arguments
parsed and ready to use.

Since I published my 1997 C++ command
line parsing framework (see Reference),
many readers have e-mailed me with
requests and suggestions. The top two
requests have been for a Java implementa-
tion and an improvement to handle arrays of
arguments. In this article I present a total
rewrite of the framework with improvements
for Java programmers.

Using the Framework
Before moving to the implementation I’ll

demonstrate how to use the framework to
write a command line utility. Let’s say you
want to write a utility called “mycat” – like
the UNIX cat – which takes a number of files
and concatenates them together into a larg-
er file. A –v option turns verbose output on
and off. A –l option allows the insertion of
extra empty lines between the files. Ths
command would look like:

mycat [–l <int>] [–v] file1 file2

In your Main class you need to add a
Token object for each argument. In this
example we have three Tokens: the number
of lines, the verbosity mode and the input
files. In addition, you need to add an Appli-
cationSettings object. This object is used to
contain all the arguments.

The source code for these settings is
shown in Listing 1. I first declare the
sm_main variable and then the three Token
variables: sm_verbose, sm_files, sm_lines.
The arguments in the constructor of each
token object fully describe the expected
usage of the Token:
• Is it a switch or an argument?
• What is the switch’s name (e.g., –v)?
• What is its type (integer, string, etc.)?
• Can it appear multiple times (e.g., –l, 1, –l,

2)?
• Is it a required argument?
• If not, when the argument is missing:

1. Is there an environment variable to pro-
vide the value?

2. Is there a default value?

A static initializer adds the Token vari-
ables to the ApplicationSettings variable. By
the time the main() function of your applica-
tion is reached, the ApplicationSettings
object knows everything about the syntax of
your command line utility.

Listing 2 shows the main program of my
example. The first line after the try state-

ment calls the parseArgs() method of the
ApplicationSettings object. The actual com-
mand line arguments are passed as an argu-
ment to the object. When the syntax is incor-
rect, a usage message is printed and an
exception is thrown. Otherwise, the Token
objects are set to contain appropriate val-
ues. For instance, when the –v option is pre-
sent, the sm_verbose object will be set.
Later, when its getValue() method is called, it
will return true.

In a similar fashion, if two files are passed
as arguments, let’s say foo.cc and bar.cc, the
sm_files Token will be set appropriately. Its
getValue(0) method will return foo.cc, its
getValue(1) method will return bar.cc.

Now compile the example with your
favorite development environment and run
the resulting code without passing any argu-
ments. You should get the usage message in
Listing 3. But wait a minute: you never wrote
code to print usage messages; what’s going
on here? It’s very simple. The framework
uses the same code that defines the expect-
ed Tokens to generate usage statements.
Kiss the ugly, always-out-of-date, static
String statements that describe the usage of
the utility goodbye.

Now let’s run the program again with
some decent arguments. Let’s say we run it
with arguments “–v foo.cc bar.cc”. The pro-
gram prints the arguments correctly.
Though we didn’t pass any value for the –l
switch, the Token returns 0. This is the
expected behavior because the default value
of the sm_lines Token is indeed 0.

Why Use the Framework?
By now some of the advantages of the

framework should be obvious to you. The
error-prone while and switch statements that
usually parse the arguments have been
replaced by a few very readable statements.

These statements:
• Document the usage of the command line

utility
• Encapsulate the settings so they can be

used by the rest of the program
• Automatically generate usage messages

when the user enters incorrect syntax:
1. missing arguments
2. unexpected arguments
3. wrong types of arguments

JAVA FRAMEWORKS

Parsing Command Line
Arguments with Java

Using an effective Java framework
to write command line tools

by Panos Kougiouris

21VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

DevelopMentor
www.develop.com

22 • VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

The stated advantages speed up the orig-
inal development of any command line utili-
ty. They allow the developer to jump to the
real code as soon as possible. At the same
time, they provide immediate access to the
command line settings and usage messages.

Where the framework really shines is in
the area where most of a developer’s time is
spent: software maintenance. If a command
line utility is successful, users will ask for
changes and improvements. Many of them
will translate to more command line options
or change the syntax of existing ones. The
framework makes adding and modifying
options trivial and safe. Compile-time mes-
sages will save the developer from runtime
embarrassment.

Finally, the framework is extensible. One
can define new types of switches that
accommodate new data types or anything
else a developer desires.

At this point you can go ahead, download
the code and start using it in your own appli-
cations. The next few sections discuss the
design of the framework.

The StringArrayIterator Class
The StringArrayIterator class is a utility

class (see Listing 4). It encapsulates an array
of strings and a position inside the array.
The get() method returns the String at the
current position. The moveNext() operation
on the array allows the programmer to
advance the current position to the next
string. The EOF() operation determines
when the end of the array has been reached.

The ApplicationSettings object contains
a StringArrayIterator object. It gets initial-
ized from the command line arguments.

The Token Class
The Token class, shown in Listing 5, is an

abstract class. Each Token object contains a
description of an argument or a switch. After
a successful parsing it also contains the
value or values that were provided for the
argument in the command line.

During the parsing phase, the most
important methods of the Token class are
the parseSwitch() and parseArgument()
methods. Both of them take the StringAr-
rayIterator object with the command line
arguments as input. If the current command
line argument is recognized, three things
occur: it’s parsed, the pointer of the
StringArrayIterator object is moved and a
value of true is returned. If it’s not recog-
nized, a value of false is returned.

The values that correspond to this switch
or argument are stored in a Vector of
objects. Subclasses determine their class.
For instance, the StringToken subclass will
have String objects, and the IntegerToken
subclass will contain Integer objects.

While the program is running, the values

are accessible using the getValue(int) and
getValue() operations.

Token Subclasses
A Token subclass encapsulates argu-

ments of a specific type. For example, there’s
a StringToken, an IntegerToken, etc. Since
most of its methods have a generic imple-
mentation, each Token subclass has very
few methods to implement.

Listing 6 presents the implementation for
the class StringToken. A few more subclass-
es are provided in the downloaded code.
You can extend the framework by imple-
menting more subclasses.

The ApplicationSettings Object
The ApplicationSettings object puts

everything I’ve discussed so far together
(see Listing 7). It contains all the Token
objects and initiates the parsing algorithm.
The user triggers the parsing by calling the
parseArgs() method.

The command line arguments are
assigned into the StringArrayIterator mem-
ber of the class. Then for every command
line argument, each Token object is called
and asked to parse it as either an option or
an argument.

If no Token object can parse the argu-
ment, a usage message is printed. The usage
message is printed by iterating through the
Tokens and calling their printUsage() and
printUsageExtended() methods. Both meth-
ods take an OutputStream as an argument.
They print their output to this stream.

Pure Java and Impurities
Almost all the code is pure Java. Since

pure Java doesn’t provide support for envi-
ronment variables and assertions, I had to
use the functions provided in my environ-
ment, the Win32 Virtual Machine.

These few lines of code are carefully iso-
lated in the util.java file shown in Listing 8. In
a pure Java environment you can comment
out three lines of code from this file. You don’t

get assertions and support for initialization of
arguments from environment variables. Oth-
erwise, everything else works as advertised.

Limitations
The framework doesn’t provide support

for complex scenarios. For instance, there’s
no support for switches that depend on each
other. You can’t dictate that the –t option can
appear if and only if the –p option appears.
You’d have to implement such checks your-
self after the arguments were parsed.

Conclusion
In this article I presented an extensible

Java framework. The framework simplifies
the development and maintenance of code
that parses the arguments of command line
utilities and tools.

The framework doesn’t provide support
for complex scenarios. Still, my experience
is that the framework covers most common
cases. I expect that it will be as useful for
Java development as it has been for C++.

Reference
Kougiouris, Panos (1997). “Yet Another

Command-Line Parser,” C/C++ Users
Journal, Vol. 15, No. 4, April.

About the Author
Panos Kougiouris has ten years’ experience in soft-
ware development for high-tech companies. For the
past three years he has been at Healtheon, a Silicon
Valley startup, and he has held technical positions
with Oracle and Sun Microsystems. Panos holds com-
puter science degrees from the University of Illinois at
Urbana-Champaign and the Univ. of Patra, Greece.
He can be reached at panos@acm.org.

ApplicationSettings

+parseArgs()

StingArrayIterator

+get()
+moveNext()
+EOF()

StringToken

+getValue()
+getValue(index:int)

IntegerToken

Token

+parseSwitch()
+parseArgument()
+printUsage()
+printUsageExtended()

+getValue()
+getValue(index:int)

Figure 1: A UML class diagram of the parsing framework

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

panos@acm.org

23VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

KL Group
www.klg.com

24 • VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal

Since the introduction of the Java Foun-
dation Classes (JFC), Java applications
have been able to be implemented using a
rich set of window components. These
components – called Swing – along with
customizable “look and feel,” allow applica-
tions to be implemented without relying on
a native windowing system. With the
release of Java 2 (a.k.a. JDK 1.2), the JFC
has found a permanent home as part of the
JDK rather than being distributed separate-
ly. Swing includes two very powerful but
complex components called the JTable and
JTree. This article focuses solely on the
JTree and explores various aspects of the
JTree by using two examples that show
how business objects can be visually repre-
sented within the JTree component.

Using the
M o d e l - V i e w -
Controller (MVC)
pattern, originally
from Smalltalk, the
majority of the
Swing classes
are implement-
ed by using a
variation of the
MVC that collaps-
es the view and con-
troller into a single class
called the delegate. (For more
details on this topic, you can visit an
online Swing tutorial, “What is Swing? –
2”). A working understanding of the
model/delegate relationship will help you
understand the classes and interfaces
that accompany each of the Swing compo-
nents.

As stated by Sun, “With the JTree class,
you can display hierarchical data. JTree
doesn’t actually contain your data; it’s sim-
ply a view of the data.” The challenge
comes from associating business objects

JDJ FEATURE

Displaying your
business objects

in a JTree
by Mark Steenbarger

http://www.JavaDevelopersJournal.com

25VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

with a corresponding Swing object. So how
do you represent your current business
objects in a JTree without altering your
class definition of the business objects?

This article covers two alternatives. In
both examples the objectives are to mini-
mize (1) the coupling between the business
objects and the JTree, and (2) the amount
of effort and code to accomplish the tasks.
In both examples I use a class called Vehicle
that represents any business object and
that can be displayed in hierarchical fash-
ion. Since the JTree is designed for display-
ing data with hierarchical properties, the
only requirement is that there be methods
within the business object’s class definition
to implement navigation within a hierarchi-
cal structure. In the examples, the Vehicle
class has subtypes that provide a hierarchi-
cal structure. For example, one instance of
the Vehicle class might be called “Motor
Vehicle,” which could contain subtypes of
Car, Truck and Van. These vehicles, while
separate, share the commonality of being a
motor vehicle.

Throughout this article I use ter-
minology common to the JTree
API and its associated classes
and interfaces. The terminolo-
gy is defined for
you: in the JTree
Terminology
Table.

One aspect
of the JTree

that makes it
more complex than

other Swing classes is
that the associated model in

the model-delegate pattern for the
JTree isn’t where data is maintained.
Take the JTextField class, for example.
In JTextFields, the view (JTextArea)
offers a setText(String) method, and its
associated model (called a document)

offers an insertString(int,
String, AttributeSet). Both

methods allow manipu-
lation of the under-

lying data. In the
case of the

JTree, nei-
ther the

JTree class nor its associated model inter-
face – the javax.swing.tree.TreeModel –
offers a means of manipulating the underly-
ing data.

Another aspect of the JTree is the
add(Component) method, which comes
from being a subclass of the Container
class. This method, however, is used for
performing additions in the sense of con-
tainment (i.e., JPanels are commonly used
to contain several other components by
adding them to the JPanel), not for adding
data to the JTree.

In the first example – AddData_Exam-
pleA.java (see Listing 1) – associating a
business object’s data to the JTree is done
using the default helper classes:
javax.swing.tree.DefaultTreeModel and
javax.swing.tree.DefaultMutableTreeNode.
The default model class consists of the
methods insertNodeInto(MutableTree-
Node, MutableTreeNode, int) and
removeNodeFromParent(MutableTree-
Node). These methods allow the addition
and removal of nodes from the JTree. Since
my business object, the Vehicle class,
doesn’t implement the MutableTreeNode
interface, it can’t be directly added to the
JTree. Therefore, to make it a valid Muta-
bleTreeNode without altering the class
definition, I “wrap” the Vehicle class using

Node: Any position within the JTree where data associat-
ed with the business object is being represented.
Path: A collection of a contiguous set of nodes. A path
can contain one or many nodes. A null path indicates a zero
node path or an empty path. The collection of nodes will
consist of a strict ancestry line. (If you think of a traditional
organizational chart as a tree, then an example of a path
would be the line drawn from you to the president or CEO.)
Leaf: A special kind of node. As its name implies, this is
the node at the end of a path. There are no more nodes
connected to the leaf node. (Using the organizational chart
example again, the leaf is the person that has no personnel
reporting to him or her.)
Root: A special kind of node. In comparison to a leaf, a
root’s parent information is never examined. It’s the highest
point within the hierarchy. A root’s parent relationship either
does not exist or doesn’t need to be displayed.
Parent: Represents a node’s relationship with another
node. In a parent/child relationship, the parent is analo-
gous to a super class within the realms of object-oriented
concepts.
Child: Represents a node’s relationship with another
node. In a parent/child relationship, the child is analogous
to a subclass of its parent. It inherits all the properties asso-
ciated with its parent. (Note: As of JDK 1.2/Swing 1.1, a
node only can have one parent.)
User Object: Refers to the business object associated
with a node. While not required, all user objects will usually
be of the same class type. (In the examples provided, the
Vehicle class is used to represent the business object.)
Editor: This is a component (usually an extension of a

JComponent) that has the unique role of allowing the user
to change the data of a specific node.
Renderer: This is a component (usually an extension of
a JComponent) that has the unique role of deciding how a
node’s data is to be displayed within the context of the
JTree when a user isn’t editing the data. (Note: Using an
AWT component as an editor or renderer may generate
unwanted results. See articles that relate to mixing light-
weight with heavyweight components.)
TreeModelEvents: Swing provides the following
three types of tree events:
1. Expansion event – an event generated when a node is

collapsed or expanded.
2. Model events – there are four types of model events:

a. node changed – generated after a node is changed.
This is the only event the TreeModel interface supports
with the method valueForPathChanged(TreePath path,
Object newValue.) While this method could be imple-
mented to represent any of the four types of model
events, typically this represents the node changed
event, and the DefaultTreeModel class implements it
as such.

b. node inserted – generated when a node is inserted
into the JTree.

c. node removed – generated when a node is removed
from the JTree.

d. structure changed – a “catchall” event used when
something drastic has happened to the structure of the
JTree. It’s the most expensive event as it may result in
a repaint of the entire JTree.

3. Selection event – an event generated when the selec-
tion of a node takes place.

JTree Terminology

the DefaultMutableTreeNode.
Here are the steps performed within the

code in AddData_ExampleA.java:
1. Obtain a reference to a user object. An

instance of the user object is created. In
this example, the Vehicle class is the user
object:

Vehicle vObj = new Vehicle("Transportation
Vehicles");

2. Create an instance of TreeNode. An
instance of the DefaultMutableTreeNode
class that implements the MutableTree-
Node interface, (a subinterface of Tree-
Node) is created using the instance of the
user object created in step 1. (The sec-
ond argument indicates whether the
node will allow children to be added to it.
In this example, I want to allow children
so I pass in the value true.):

DefaultMutableTreeNode tRoot = new Default-
MutableTreeNode(vObj, true);

3. Create an instance of TreeModel. The
DefaultTreeModel class implements the
TreeModel interface and can be created
using the TreeNode object that was cre-
ated in step 2 as its constructor’s argu-
ment:

i_model = new DefaultTreeModel(tRoot);

4. Create an instance of the JTree. The JTree

is created using the TreeModel object
that was created in step 3:

i_tree = new JTree(i_model);

5. Create a child TreeNode. When the user
clicks the add button, another instance of
the DefaultMutableTreeNode is created
using another instance of the Vehicle
class with the name of “Car”:

i_car = new Vehicle("Car");
i_carNode = new DefaultMutableTreeNode(

i_car);

6. Add child node to the JTree. The method
insertNodeInto(MutableTreeNode, Muta-
bleTreeNode, int) from the Default-
TreeModel class is invoked on the
TreeModel that was created in step 3.
There are three arguments. The first argu-
ment consists of using the instance of the
DefaultMutableTreeNode that was created
in step 5. The second argument calls for
the parent of the object being inserted,
which in this case is the root. To obtain
the root, the TreeModel interface provides
a getRoot() method. (Note: the return type
of getRoot() is Object, which requires
casting the returned object to the Muta-
bleTreeNode class.) The third argument
requires an int to indicate where within
the children (assuming more than one
child) the new node should be graphically

positioned. Since there are no other chil-
dren, the value used is 0:

i_model.insertNodeInto(i_carNode, (Mutable-
TreeNode)i_model.getRoot(), 0);

To see this example run, compile and
execute the AddData_ExampleA.java (see
Listing 1) source file. Upon executing the
application, the JTree is displayed showing
a single node – the root (see Figure 1).

At this point steps 1 and 2 have been
completed. Once the user invokes some
action that indicates adding a node to the
JTree (in this example, clicking the button
labeled Add Node: “Car” button) a new
node is added to the tree (see Figure 2).

To remove a node from the JTree, the
DefaultTreeModel method – removeNode-
FromParent(MutableTreeNode) – is called
using the object created back in step 3 of
the add process:

i_model.removeNodeFromParent(i_carNode);

To see this happen, click on the button
labeled Remove Node: ‘Car’ button in the
AddData_ExampleA.java program. By
repeating steps 5 and 6, the program will
construct the entire contents of a JTree.

While this add process is simple and
easy to program, there are some shortcom-
ings with this approach. First, it demands

26 • VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ADVERTISER INDEXADVERTISER INDEX
4th Pass 18
www.4thpass.com 206 329-7460

ColdFusion Developer’s Journal 26
www.sys-con.com 800 513-7111

Computer Associates 6
www.cai.com/ads/jasmine/dev 888 7-JASMINE

DevelopMentor 21
www.develop.com 800 699-1932

Distinct Software 33
www.distinct.com 408 366-8933

Enterprise Solutions Conference 41
www.jumpstart99.com 888 823-DATA

EnterpriseSoft 11
www.enterprisesoft.com 415 677-7979

InetSoft Technology Corp. 17
www.inetsoftcorp.com 732 235-0137

Inprise Corporation 49
www.inprise.com 408 431-1000

Advertiser Page
Intuitive Systems, Inc. 15
www.optimizeit.com 408 245-8540

Jinfonet 51
www.jinfonet.com 301 983-5865

KL Group Inc. 23, 68
www.klg.com 800 663-4723

Kuck & Associates 45
www.kai.com 888 524-0101

Microsoft Corporation 37
www.msdn.microsoft.com/visualj 800 509-8344

NetBeans 13
www.netbeans.com 420 2/ 8300 7300

Object Space 67
www.objectspace.com 972 726-4100

OMG 63
www.omg.com 508 820-4300

Oracle Corporation 2
www.oracle.com/info/27 800 633-0539

Pervasive Software 43
www.info@pervasive.com/sdk-jd 800 884-6235

ProtoView 3
www.protoview.com 800 231-8588

Sales Vision 47
www.salesvision.com 704 567-9111

Schlumberger 4
www.cyberflex.slb.com 800 825-1155

Slangsoft 35
www.slangsoft.com 972-3-7518127

Snowbound Software 27
www.snowbnd.com 617 630-9495

Spring Internet World 99 55
www.internet.com 800 500-1959

SYS-CON Radio 54
www.sys-con.com 800 513-7111

Wall Street Wise Software 59
www.wallstreetwise.com/spell.htm 212 342-7185

Advertiser Page Advertiser Page

that the application constructing the JTree
take full responsibility for constructing and
maintaining all the hierarchical relation-
ships between each node. The code to han-
dle this can easily become too large and dif-
ficult to debug or maintain.

A second shortcoming is that the
responsibility of keeping concurrent data
accurate falls back on the application con-
taining the JTree. Running the
AddData_ExampleA class explains this.
After you create and add the child node
“Car,” if the button labeled “Change Name
to ‘Van’” is clicked, the node that previous-
ly displayed “Car” will now display “Van.”
However, for the refresh to occur immedi-
ately, the following code is required:

i_model.valueForPathChanged(pathToRoot,
i_car);

Another method, called valueFor-
PathChanged(TreePath, Object), is provid-
ed as part of the TreeModel interface (see
Figure 3). However, it again requires know-
ing which node has changed and the path in
which it resides. The reason the update
isn’t “free” is because Swing is still not
aware of attribute changes made to the
node’s user object.

A third shortcoming is with the use of
the default classes that are provided by
Swing. While convenient to use, it should
be noted that certain limitations and costs
exist. In my example, the DefaultMutable-
TreeNode is not a thread-safe class. Other
issues relating to performance may need to
be addressed when using the “default”
classes in Swing.

It should also be noted that since the meth-
ods insertNodeInto() and removeNode()
aren’t part of the TreeModel interface, calls
made to the getModel() method will require
casting prior to invoking these methods. This
defeats the advantage of using interfaces
because if these methods were part of the

TreeModel interface,
then the cast to
DefaultTreeModel after
getModel() wouldn’t
be necessary.

The second exam-
ple, displaying a busi-
ness object’s data in a
JTree, is done by cre-
ating a tailored Muta-
bleTreeNode class.
Writing my own Muta-
bleTreeNode class
gives me a “bridge”
between the user
object class being dis-
played and the Swing
MutableTreeNode
interface. I use the
term bridge to imply
that there will be a translation between API
calls invoked by one class and the appropri-
ate methods invoked in a corresponding tar-
get class (see Figure 4).

This allows the target class (the user
object class) to be free from knowing the
functionality of the calling class, and vice
versa. Therefore, the Vehicle class definition
(see Listing 2) isn’t influenced by how Swing
is implemented.

Note: It’s good practice to implement the
toString() method in your objects to pro-
vide a meaningful String representation of
the class. The JTree uses the toString()
method to determine what text to display in
the TreeNodes.

Accomplishing this requires completion
of the two steps listed below:
1. Create a MutableTreeNode (Vehicle-

TreeNode) class (see Listing 3) for the
Vehicle class. This class will implement
the MutableTreeNode interface by invok-
ing methods defined in the Vehicle class.

2. Update the JTree to reflect changes made
to the user object.
When changes are made to the underly-

ing object the JTree won’t update its view
to reflect the new value until it’s prompted
to do so. As discussed earlier, the method
valueForPathChanged(TreePath, Object)
on the TreeModel will update the JTree
view. However, to invoke the method
requires a reference to the TreeModel that
can’t be obtained from a TreeNode. There-
fore, I chose to implement an event mech-
anism as a logical means of communicat-
ing updates made by the MutableTree-
Nodes to their associated user objects.
This required creating two interfaces
(UpdateEventSource, UpdateEventListen-
er) (see Listings 4 and 5) and one class
(UpdateEvent) (see Listing 6) for the event.

Now to bring it all together! Following is
the sequence of steps that occurs when
executing the AddData_ExampleB (see List-
ing 7) application class:
1. Create an instance of the root Vehicle

class:
Vehicle wrkVehicle = new Vehicle("Vehicle");
wrkVehicle.setType("Motor");
wrkVehicle.setDescription("Classification
for motor vehicles");

27VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Figure 1: JTree after inserting one child node to the root Figure 2: JTree after inserting one child node into the root node

Figure 3: Result of calling the valueForPathChanged
(TreePath, Object) on the TreeModel

28 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 4 1999 http://www.JavaDevelopersJournal.com

2. Create an instance of the VehicleTree-
Node class. The argument used in its con-
structor is the Vehicle class that was cre-
ated in step 1. The second argument is a
Boolean that indicates if the node being
created will allow children. In this exam-
ple, the nodes will have children so the
value of true is used:

i_root = new VehicleTreeNode(wrkVehicle,
true);

3. Create an instance of a TreeModel class.
By using the DefaultTreeModel class, the
constructor is passed in the root node
created in step 1 and true is passed in to
indicate that children are allowed:

i_model = new DefaultTreeModel(i_root, true);

4. Create an instance of the JTree. The JTree
is constructed using an instance of the
DefaultTreeModel class, which is con-
structed using the VehicleTreeNode
object that was created in step 3:

i_tree = new JTree(i_model);

At this point the work is finished and the
magic of the JTree begins (see Figure 5).

Here’s how this works: subsequent
calls are made by the JTree to the TreeN-
ode (in my example, it’s the VehicleTreeN-
ode), asking if it allows children
(allowsChildren). If so, it obtains a child
count (getChildCount), iterates through
the list of children and sets the current
node as the parent (setParent) on the
child node. This will repeat for each node
until the leaf node is reached (getChild-
Count returns 0). Actually, the default
behavior is to perform these steps in a
lazy fashion. Rather than take a perfor-
mance hit by obtaining the entire struc-
ture of the JTree right away, nodes are dis-
played in a collapsed state and wait until
they’re expanded before completing con-
struction of the JTree.

Adding nodes to the JTree is accom-
plished by invoking methods similar to
those in the first example. By invoking the
DefaultTreeModel’s method, insertNodeIn-
to(MutableTreeNode, MutableTreeNode,

int) with a Vehicle-
TreeNode as the
required Mutable-
TreeNode, any sub-
types associated with
the Vehicle will also
immediately appear
on the JTree. This dif-
fers from the first
example in that sub-
sequent calls to the
i n s e r t N o d e I n t o ()
method would be
required to add the
subtypes of the Vehi-
cle to the JTree. This
can be seen by run-
ning the AddData_

ExampleB.java application. The Truck/Vehi-
cle is added to the root Vehicle prior to
being added to the JTree. So when the root
Vehicle is added to the JTree, the child
node Truck is also added to the JTree with-
out requiring the additional call to insertN-
odeInto().

It’s worth noting that while the Mutable-
TreeNode interface offers methods like
insert(), remove() and removeFromPar-
ent(), invoking these methods directly to
alter the parent /child relationships circum-
vents the TreeModel. Since the TreeModel
maintains the view, changes made directly
to the MutableTreeNodes won’t be reflect-
ed until a forced repaint occurs (resizing
the window, etc.).

Summary
The first example demonstrated how

data could be added to a JTree simply and
easily. In the example, the handling of the
details of the JTree was delegated to the
Swing default classes. It’s a good solution if
the JTree is going to be used to display pre-
dominately static or read-only data. How-
ever, if the JTree is to be used heavily, such
as in an administration application, then
the second alternative – creating a specific
MutableTreeNode class to handle the
translation between the graphical and data
classes – may be more appropriate. It min-
imizes the resources necessary to perform
the construction of the tree, and the code
that needs to be written is kept at a mini-
mum.

I hope this article assists developers
who are new to Java, or to the JFC and
Swing to quickly become acclimated to
the power of using a JTree to graphically
represent and administer their data
objects.

Resources
1. http://java.sun.com/docs/books/tutori-

al/uiswing/components/tree.html
2. http://java.sun.com/docs/books/tutori-

al/uiswing/overview/swingFeatures.html
#model

About the Author
A graduate of Taylor Univ. with a degree in computer
science/artificial intelligence, Mark Steenbarger is a
senior software engineer at Tivoli Systems, Inc. He
develops Enterprise Service Management software as
a member of the Applications Team and has been
developing ESM software since 1996. Mark can be
reached at ark.steenbarger@tivoli.com.

Tree

Model

Nodes

Translate Swing calls to Vehicle API calls

VehiclegetChildAt(int)
get Parent()

Update the
Display

User clicked, etc Inquire of
structure

Return value

getSubTypes()

(A Business
Object)

Figure 4: Result of creating a MutableTreeNode class that interfaces with the Vehicle class

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

mark.steenbarger@tivoli.comFigure 5: Translating Swing method calls to business object method calls

http://www.JavaDevelopersJournal.com 29Java DEVELOPER’S JournalVOLUME: 4 ISSUE: 4 1999 •

Snowbound
www.snowbnd.com

30 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 4 1999 http://www.JavaDevelopersJournal.com

A Tree for All Occasions
The Java Foundation Class, also known

as Swing, in addition to augmenting,
enhancing and generally implementing plat-
form-independent replacements of AWT
components, added the JTree class to its
repertoire of new GUI components. Swing’s
JTree supports a Windows Explorer-style
(outliner-style) tree that makes it easy to
graphically render data with hierarchical
relationships. A limited number of graphi-
cal attributes as supplied by the default
look-and-feel provided with Swing – e.g., the
icon representing the nodes – is also readi-
ly configurable.

This article describes an implementa-
tion similar to JTree that can be used in
Java 1.0.2 or when using Swing may not be
an option. This implementation also adds
features not found in the default JTree.
These include the option of rendering a
tree vertically or horizontally, and of
aligning it left, center or right. In addition,
subtrees can be interactively moved from
one branch to another using drag-and-
drop. I also describe how some of these
extra features can be migrated to Swing
when it becomes more popular in the
future. The source code in this article
requires the Callbackable, CallbackList,
Widget, PositionableGridConstraints and
PositionableGridLayout classes intro-
duced in previous issues of JDJ.

Creating a Tree –
The TreeNode Class

A tree is essentially a set of hierarchical-
ly related nodes. In this implementation,
each node is an instance of the TreeNode
class. A user object may be stored in a
TreeNode, including any AWT or composite
AWT Component. While TreeNode doesn’t
contain any rendering code, the TreeViewer
class stores the icon for each node in its
representative TreeNode instance. Thus
each TreeNode can be represented with a
unique icon if necessary.

An instance of the TreeNode class stores
references to its parent and children. A null
reference for the parent means that this
node is the root of the entire tree. A null ref-
erence for its children means that the node
is a leaf. Listing 1 shows the implementa-
tion of a TreeNode class. The following
code fragment shows how to create the tree
shown in Figure 1:

TreeNode root = new TreeNode(null, null,
null, "Root", null);

new TreeNode(root, null, null,
"Level 1.1", null);

new TreeNode (root, null, null,
"Level 1.2", null);

new TreeNode (root, null, null,
"Level 1.3", null);

new TreeNode (root.getChild(1),
null, null, "Level 2.1", null);

new TreeNode (root.getChild(1),
null, null, "Level 2.2", null);

new TreeNode (root.getChild(1),
null, null, "Level 2.3", null);

The first line creates the root of the tree;
note the null passed in the first parameter,
which indicates no parent. Lines 2 to 4 cre-
ate the second level; note that root is
passed as the first parameter in this case.
Lines 5 to 7 create the third level; note that
the child of the root with index 1 is use for
the first parameter.

Walking the Tree –
The TreeWalker Class

While a collection of hierarchically
linked TreeNode instances implements the
structure of a tree, the TreeWalker imple-
ments an abstract class for traversing the
tree. In other words, given a tree, an exten-
sion of the TreeWalker will traverse it in
either a breadth or depth first approach,
performing an action on each node as it
goes. Listing 2 shows the code of the Tree-
Walker class. When creating an instance of
a TreeNode, an instance of a TreeWalker

extension is usually passed as the last para-
meter of the TreeNode constructor. Listing
3 shows the TreePrinter class, which is an
extension of TreeWalker for printing each
node of a tree.

A sample printout of the tree in Figure 1
using the TreePrinter will yield the console
output seen in Listing 4.

Rendering the Tree –
The TreeViewer Class

TreeViewer is an extension of the Tree-
Walker class specifically for providing an
interactive graphical front-end to a tree.
The TreeViewer class takes a tree, travers-
es it and renders each node on any AWT
display surface – e.g., Canvas or Panel. As
noted before, the AWT Component stored
in each TreeNode instance is used to render
the node. For example, if a Button is to be
displayed for a specific node in a tree, then
an instance of the Button should be added
to the TreeViewer, giving its location in the
tree with respect to a parent node. The
TreeViewer also manages the relocation of
subtrees when the user initiates a drag-and-
drop action.

TreeViewer contains the TreeViewer-
Panel class that uses the custom Layout-
Manager introduced in the article “Imple-
menting a Grid LayoutManager with Posi-
tionable Components” (JDJ Vol. 3, Issue
12) to lay out the tree. The depth of a node
in a tree hierarchy determines its vertical
position in the grid. To determine its width,
the TreeViewer recursively walks the tree
(using the walkDepth method) to deter-
mine the grid position of each node rela-
tive to its neighbor on the left. After adjust-
ing for alignment and orientation to deter-
mine its exact location on the grid, the
node, as well as the lines leading to it from
its parent, is drawn.

Actions on the nodes are left to the
AWT Components representing the nodes
themselves to handle. However, Tree
relies on the Widget class introduced in
the Widget-izing AWT Components to
implement drop-and-drag. Because some
AWT Components (notably the Button)
recognize only the action event in some
implementation of Java 1.0.2, the drag-
and-drop capability is also implemented
in the TreeViewerPanel. In general, a node

PROGRAMMING TECHNIQUES

Building a Tree Viewer
Viewing hierarchical relationships graphically

in Java without using Swing JTree

by Daniel Dee

31Java DEVELOPER’S JournalVOLUME: 4 ISSUE: 4 1999 •http://www.JavaDevelopersJournal.com

Distinct Software
www.distinct.com

32 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 4 1999 http://www.JavaDevelopersJournal.com

or a subtree may be dragged by holding
the mouse button just outside of the But-
ton representing the node or the root of
the subtree, and then moving the mouse.
If the particular AWT implementation sup-
ports dragging inside the Component
(e.g., Button), dragging may be accom-
plished by holding the mouse button
down inside the Component itself and
then moving the mouse. When the user
moves a subtree, the callback determines
the drop site, removes the subtree from
the original location and attaches it to the
new parent (MouseDragCallback). The
complete TreeViewer implementation is
shown in Listing 5.

Using the Tree Class to
Display a Tree

Creating a visual representation of a tree
using the TreeViewer class parallels that of
creating a tree structure using the TreeN-
ode class. Listing 6 shows an application
that creates an interactive tree, which is
center aligned and vertically oriented. The
application requires two command line
parameters: the first to specify whether the
tree is to be displayed “horizontally” or
“vertically”; the second to determine
whether it is to be displayed “left,” “center”
or “right” align. The root will be created by
default. Click on a button to create a child
for it. To move a node, hold down the
mouse button just outside the Button rep-
resenting the node and drag it to the node
that will become the new parent of the sub-
tree. An entire subtree may also be moved
this way.

TreeViewer and JTree
TreeViewer and TreeNode are analogs of

Swing’s JTree and TreeNode. Both Tree-
Viewer and JTree are the respective render-
er and event handler in each implementa-
tion.

By default, JTree provides only a Win-
dows Explorer-style tree. In reality, JTree
delegates most of its look-and-feel deci-
sion to an instance of the BasicUI, so it is
possible to customize the renderer by
extending the supplied BasicTreeUI class.
As Swing gradually becomes the GUI toolk-
it of choice for Java, the code use in this
implementation of a general tree viewer
may be migrated.

Conclusion
In this article we introduced a TreeView-

er implementation with extra features that
are not in Java’s Swing-supplied implemen-
tation. In general, TreeViewer could be a
powerful tool for visualizing hierarchically
organized structures. A future article will
explore the use of TreeViewer in viewing
the organization of an AWT graphical user

interface design – a step that will take us
one step closer to implementing a GUI lay-
out editor.

Download Source Code
The program in this article requires the

callback and widget code from the Imple-
menting Callback and Widget-izing AWT
articles published in the April and June
1998 issues of JDJ (Vol. 3, Issues 4 and 5).
It also requires the positionable grid lay-
out code from the December issue of JDJ
(Vol. 3, Issue 12). Full source code for this
article (including a Java 1.1 version) can
be downloaded free from
www.wigitek.com. A version that also sup-
ports the collapsing of subtrees for Java

1.0 and 1.1 is also available from Wigitek
Corporation at the same Web site.

About the Author
Daniel Dee has two MS degrees and is currently
president of Wigitek Corporation. He has more than
10 years’ working experience in the development of
GUI software toolkits, using X versions 10 and 11
and then Java since its inception. Daniel can be
reached at daniel@excaliber.wigitek.com.

Level 2.1 Level 2.2 Level 2.3

Level 1.1

Root

Level 1.3Level 1.2

Figure 1: A simple tree

Figure 2: This figure shows a vertically oriented, center-aligned tree using widgetized Buttons
as nodes. Also shown is a red rectangle indicating that the “1” Button is being dragged.
Dragging is accomplished by holding down the mouse button – represented here by the

white cursor – near the Button to be dragged. The red rectangle will trace out the drag path
while the mouse button is continued to be held down. Releasing the mouse button on top of

any other Buttons moves the entire subtree rooted at “1” to the new location.

daniel@excaliber.wigitek.com

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

VOLUME: 4 ISSUE: 4 1999 • 33Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Slangsoft
www.slangsoft.com

http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal34

http://www.JavaDevelopersJournal.com Java DEVELOPER’S Journal 35VOLUME: 4 ISSUE: 4 1999 •

http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal36

One of the primary design goals for Java,
and still one of the primary reasons for
using it, is the idea of “write once, run any-
where.” This allows software developers to
develop an application using their preferred
operating system and to deploy it to a wide
range of other platforms. Java is therefore
an ideal language choice when faced with
the challenge of developing a platform-inde-
pendent application.

Many articles have been written on
applet development and the use of Java for
bringing more interactivity to pages on the
Web. While this is a valid use of Java, it’s
equally well suited for developing more tra-
ditional standalone or client/server applica-
tions that can run across multiple plat-
forms. When Java is used to develop each of
the tiers of an n-tier client/server applica-
tion, its cross-platform nature offers addi-
tional benefits, including scalability (inde-
pendent of hardware platform), flexibility
and vendor independence.

Which JDK?
One advantage of application develop-

ment over applet development is that you
have much more control over which version
of the Java Development Kit will be used to
run your application. If you’re developing a
small application for deployment in the next
couple of months, you should probably use
JDK 1.1. However, you may want to consider
using JDK 1.2 for slightly longer-term pro-
jects. It offers many new features and
improved performance.

Whichever version you decide to use for
your application, be sure to bundle the
appropriate Java Runtime Environment
when you distribute your application.

Application development, with its more
relaxed security model, allows lower-level
access to the operating system. This low-
level access, however, can result in your
application’s becoming platform-specific. In
this article we’ll look at five primary areas
you should pay special attention to when
developing cross-platform Java applica-

tions:
1. Adopting good programming practices
2. OS differences and limitations
3. Reading and writing files
4. Designing your graphical user interface
5. Other issues

Adopting Good Programming
Practices
Depend Only on the Core APIs

The Java core API forms a standard foun-
dation of classes that all Java Virtual
Machines must implement to be considered
“standard Java.” These are the only classes
you can reasonably expect to be available
on the end user’s machine.

If you use any third-party class libraries,
you’ll need to distribute their runtime ver-
sions (which may require a separate
license). It’s also recommended that you
verify that these third-party libraries make
use of the core Java API only and don’t use
any native calls. Otherwise the code you
write may be cross-platform. However, since
your code depends on a third-party product
that’s not cross-platform, your resulting
application won’t be cross-platform either.

Enable All Compiler Warnings
By default, the Java compiler generates

warnings for code it considers ambiguous,
platform-dependent or unclear. Although
you can disable these warnings using the
javac -nowarn option, it isn’t recommended.
Good programming practice suggests
enabling all warnings – to their maximum
level, if appropriate – in your compiler, then
changing your code to eliminate all warn-
ings produced.

Avoid Deprecated Methods
In Java application development it

shouldn’t be necessary to use deprecated
methods. While they may work in the cur-
rent release of the JDK, they’re no longer the
preferred method. Furthermore, since the
plan is to remove them from the JDK, on

some platforms they may already have been
removed.

Avoid “Undocumented Features”
Almost any implementation of the core

Java API will include supporting classes
and/or packages that aren’t themselves part
of the core API. Such classes/packages are
generally undocumented – although they
may provide some quick-and-dirty function-
ality, they should be avoided since there’s a
good chance they won’t be available on
other platforms.

Similarly, your applications shouldn’t
depend on the implementation details of
any one particular Java implementation. For
example, use of the AWT component peer
interfaces is documented as being “For use
by AWT implementers.” Peer classes are
highly platform-specific. As a portable
application makes use of the AWT rather
than implementing it, you should avoid
using peer classes in your application.

Follow Any Applicable API Protocols
Certain methods in the core API must be

called or implemented in a certain pattern.
By skipping over some methods or calling
them out of sequence, you may write syn-
tactically correct code, which is highly non-
portable.

For example, the 1.1 JDK introduced a
new AWT event model. According to the
new documentation, the results may be
unpredictable if you mix the new event
model with the older 1.0 event model. (Refer
to “Updating 1.0 source files to 1.1” in the
JDK documentation download bundle for
details.)

Several of the AWT methods (Compo-
nent.Paint and Component.Update, in par-
ticular) accept a Graphics object as one of
their arguments. While you can use and
make changes to this object within the
method to which it was passed, you should-
n’t store a reference to it for later use. Since
the AWT implementation is allowed to inval-
idate any Graphics object after the method
returns, storing and later using a reference
to it may work on one platform but isn’t
guaranteed to work on another. This type of
problem is particularly difficult to debug.

If any of your classes override the
Object.equals method, they should also

Developing Cross-Platform
Applications in Java

Making “write once, run anywhere” a reality

?????

by Steven Gould

37VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

override the Object.hashCode method so
that for any two objects x and y:

x.equals(y) implies that
a.hashCode()==b.hashCode()

See the JDK java.lang.Object.hashCode
documentation for details.

Use System.exit Method Sparingly
You should use this only for abnormal

termination of your application. Generally,
you should terminate your application by
stopping all nondaemon threads. This is
often as simple as returning from the main
method in your application.

Since the System.exit method forces ter-
mination of all threads in the JVM, it may,
for example, destroy windows containing
user data without giving users a chance to
save their work.

Adhere to Good Practices with Thread
Scheduling and Synchronization

As with any multithreaded language,
don’t rely on priorities or luck to synchro-
nize threads. Thread scheduling may differ
on different platforms, and even between
different machines running the same plat-
form.

Before using Java’s multithreaded capa-
bilities, read and understand the JDK docu-
mentation for the java.lang.Thread class
and the java.lang.Runnable interface.
Although Java does simplify multithreaded
application development, it’s still somewhat
of an advanced topic and many of the
thread synchronization issues still exist.
Doug Lea’s book, Concurrent Programming in
Java, covers this subject in depth.

OS Differences and Limitations
Avoid Native Methods

Occasionally it may appear tempting to
use native code to implement certain func-
tionality. However, the native code is by its
very nature platform-dependent. Although
the rest of your Java application may be
completely platform-independent, the fact
that you’re using native code means that
your entire application is also platform-
dependent.

Before using native code, consider the
following alternatives:
• Define a simple server that provides the
necessary functionality, then write your
Java application as a client of that server.
• Implement the functionality of the native
method(s) in Java.

You may think that confining the native
methods to a single class and providing an
implementation of that class for every Java
platform is a sufficient workaround. This is
actually a poor “solution” since the number

of Java platforms is ever-increasing. In addi-
tion, some Java platforms have no ability to
execute native code.

Exercise Caution When Using
Runtime.exec

Although the java.lang.Runtime.exec
methods provide a means to execute other
applications on the system in a seemingly
platform-independent way, you should use
the Runtime.exec methods with caution.
While these methods are part of the core
API, the contents of the string arguments
passed to these methods are generally plat-
form-specific.

If you intend to use the Runtime.exec
methods in your application, then you
should provide a way in which the user can
specify the exact command strings. Ideally
this would be done through a GUI. However,
if the command(s) rarely need changing,
you can prompt the user to enter them dur-
ing installation, then store them in a proper-
ties file for later use.

Do Not Use Hardwired Platform-Specific
Constants

The core Java API provides several ways
to help you write a platform-independent
application. For example, instead of printing
strings with embedded carriage returns
and/or line feeds, use the System.println
method to print a string followed by an end-
of-line character. Alternatively, use Sys-
tem.getProperty(“line.separator”) to
retrieve the line separator for the current
platform.

The AWT also provides ways to help you
create a platform-independent GUI. Details
of these features are described in a separate
section below.

Issues Particular to Command-Line Pro-
grams and Command-Line Processing

Not all Java platforms support the notion
of standard input or standard output
streams. Command line programs that use
System.in, System.out or System.err may
not run under all platforms. Consider imple-
menting a GUI to provide the same function-
ality.

Even with those platforms that support
command line programs, command line pro-
cessing isn’t consistent across these plat-
forms. Although the most portable solution
is not to use the command line, this may not
be acceptable for programs that need to be
executed from within a script. In this case
consider using the POSIX convention in
which command line options are indicated
with a leading dash. As an alternative, you
also may want to consider reading the
options from a properties file and/or pro-
viding a GUI.

Do Not Assume Support for Rendering
Unicode Characters

Since not all platforms can display all
Unicode characters, use only ASCII charac-
ters for the default text for messages,
menus, buttons and labels. It’s acceptable
to use non-ASCII characters in localization
resources and in text entered by the user.

Make No Assumptions About the
Hostname Format

The java.net.InetAddress.getHostName
method returns the fully qualified host
name for the InetAddress object. The format
of the String returned by getHostName is,
however, platform-dependent. On some
platforms it’ll contain a fully qualified
domain name, yet in others it’ll contain only
the host part of that name.

If your application is merely displaying
the resulting hostname, this is unlikely to
cause a problem. However, when the name
is passed to other systems or applications,
it may be best to provide the IP address in
addition to the hostname. Note that the IP
address is available using the InetAd-
dress.getAddress or InetAddress.getH-
ostAddress methods.

Reading and Writing Files
Do Not Hard-Code File Paths

Hard-coded filenames, and especially
hard-coded file paths (a directory name fol-
lowed by the filename), frequently present
portability problems in any language. You
can address this problem in Java by using
java.lang.System.getProperties(“file.separa-
tor”) to retrieve the file/path separator or
using a java.awt.FileDialog to prompt the
user for a filename.

Alternatively, to dynamically construct a
path and filename in a platform-indepen-
dent way, use one of the java.io.File con-
structors. Be aware that even the format of
an absolute path differs between platforms.
For example, on DOS and Windows-based
platforms, an absolute path typically begins
with a letter followed by a colon. Under
UNIX, absolute paths begin with a forward
slash: “/”.

Do Not Hard-Code Line Termination
Characters

A common problem when transferring
text files between different operating sys-
tems occurs because of the different ways
the platforms represent an end-of-line
sequence. Some platforms, most notably
DOS and Windows 3.1/95/98/NT, use the
character sequence “\r\n” (a carriage
return followed by a linefeed), whereas
other systems – namely, most varieties of
UNIX – use a single linefeed (“\n”). Others
may use a single carriage return character
(“\r”).

http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal38

Additionally, though Java internally uses
Unicode characters for text, different plat-
forms have different internal representa-
tions.

JDK 1.1 provides several methods to
help address both of these problems. To
output text in a platform-independent man-
ner, use any of Java’s println methods.
These methods output the end-of-line char-
acter sequence appropriate for the platform
on which your Java application is running. If
you really need access to the appropriate
end-of-line sequence for the current plat-
form, use the value returned by
java.lang.System.getProperty(“line.separa-
tor”).

Similarly, to input text files, use the
java.io.BufferedReader.readLine method.
This reads a line of text terminated by a line
feed (“\n”), a carriage return (“\r”) or a car-
riage return followed immediately by a line-
feed, and returns the contents of the line,
excluding any line-termination characters.

Be Aware of the Maximum Length of File-
names

All platforms have some maximum
length on valid filenames. This may be more
of an issue during installation of your appli-
cation, especially when using the inner
classes of JDK 1.1 (which concatenate the
class and inner class names to come up with
the resulting filename). However, it can also
cause problems at runtime in that the JVM
may have trouble locating some of the
required classes.

One workaround to this is to package
your classes into a Java archive (JAR). Alter-
natively, a ZIP file will work if you’re devel-
oping for JDK 1.0.

Observe Strict Case Distinctions on All
Platforms

Some platforms – most notably DOS and
the Microsoft Windows platforms – ignore
case when comparing filenames. However,
don’t let this affect your development
efforts. Always use the correct case for
class names and filenames throughout your
code. That way, your Java application will
run as intended on a wider range of plat-
forms.

Combining all your classes into a JAR or
ZIP file, as discussed above, also helps pre-
serve the case of filenames.

Avoid “Special” Filenames
Some filenames have a “special” meaning

on certain platforms. For example, in DOS
and Microsoft Windows platforms, “LPT1:”
refers to the first printer port and “CON:”
refers to the console. Similarly, under UNIX,
/dev/null is the name of a special device
that simply absorbs all output directed to it.
In other words, don’t try saving anything

that you may later want to retrieve to a file
with this name.

Be aware of these and other “special”
filenames on the different Java platforms.

Designing Your GUI
Don’t Mix Event Models

Don’t mix the newer JDK 1.1 event model
with the older JDK 1.0 event model – the
results may be unpredictable if you do. In
particular, you may achieve the intended
results on a single platform with a particular
version of the JVM, but this same code may
give different – or unexpected – results on
another platform or with a different JVM.

The JDK 1.1 documentation download
bundle contains details about upgrading in
the section titled “Updating 1.0 source files
to 1.1.” Although it may be tempting when
upgrading your application from JDK 1.0 to
1.1 to do this piece by piece, resist this
temptation. Bite the bullet and do the entire
upgrade in one step.

Use Layout Managers for Sizing
Elements

Don’t hard-code the sizes or positions of
any GUI components. Their exact size is
almost guaranteed to differ between plat-
forms, as will the size of the screen and
default windows.

Break the habit of laying out components
by size and position, and learn how to use
Java’s layout managers effectively to
achieve the desired results.

Blend Your GUI with the Desktop
The size of the screen and the number of

colors available are likely to be different
between platforms – even between users.
Additionally, though you can use your own
color scheme with particular RGB values,
displays can vary considerably as to the
exact color rendered by a given RGB value.

To make your colors blend in with the
user’s desktop, you can use colors from the
java.awt.SystemColor class. Alternatively,
you may want to provide the user some way
of customizing the appearance – particular-
ly the colors and fonts – of your application,
either through an Options dialog, a proper-
ties file or both.

Rarely should you need to obtain the
screen resolution, but if you really have to,
you can use the java.awt.Toolkit.getScreen-
Resolution method.

Don’t Assume Existence of Nonstandard
Fonts

The availability and size of fonts varies
from platform to platform and even from
machine to machine depending on installa-
tion.

Don’t hard-code font sizes. Let text com-
ponents take on their default size using an

appropriate layout manager, and use
java.awt.FontMetrics.stringWidth if you
really need to determine the actual dis-
played width of a string.

Before selecting a nonstandard font, be
sure to test for its availability and provide a
suitable default font in the event that it
doesn’t exist. The default fonts supported
by JDK 1.1 are: “Serif” (usually Times
Roman), “SansSerif” (usually Helvetica) and
“Monospaced” (usually Courier).

Other Issues
Consider International Issues

The JDK 1.1 provides extensive localiza-
tion and internationalization features. It’s
worthwhile familiarizing yourself with them
and using them where applicable in your
Java application. When you first write your
application, you may only expect users from
one country, speaking one language, to use
it. However, it’s much easier to provide sup-
port for multiple locales at this point than
trying to retrofit these changes at a later
date.

For more details on the internationaliza-
tion and localization features of Java, refer
to the section titled “Internationalization” in
the JDK 1.1 document download bundle.

Choosing a Distributed Framework
When you begin developing larger appli-

cations, you may soon realize the need
and/or benefit of distributed objects, or at
least the need to separate out parts of the
application in more of a client/server role.
There are various ways to do this, including
writing your own application-specific proto-
col. The most widely supported distributed
object frameworks include RMI, CORBA and
DCOM.

CORBA, the most generic of these frame-
works, supports not only a wide variety of
platforms but also a variety of object devel-
opment languages. This allows, for example,
a Java client to communicate with a C++
CORBA server on a different machine, know-
ing only the interface published by that
object.

RMI is specific to Java and makes com-
munication between distributed Java
objects fast and easy. It has a lot in common
with CORBA, and there have been talks
about possibly merging the RMI specifica-
tion into CORBA sometime in the future.

Finally, DCOM is Microsoft’s Distributed
Common Object Model. Like CORBA, it’s
also language-independent but isn’t plat-
form-independent, being supported only on
the newer Microsoft Windows operating
systems. Furthermore, DCOM isn’t support-
ed in the standard Java API. This isn’t rec-
ommended if you’re aiming to develop a
truly cross-platform solution.

39VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Loading JDBC Drivers
While Java Database Connectivity has

many uses in standalone applications, it’s
most likely to be used when developing mid-
dleware that communicates client requests
to a back-end database. It provides a way to
allow flexibility in driver loading without
having to recompile your code each time
you want to change drivers. The
java.sql.DriverManager class is responsible
for providing this flexibility. The two ways in
which a driver can be made available to the
DriverManager class are through the
jdbc.drivers system property or through a
call to java.lang.Class.forName, which caus-
es the driver to be explicitly loaded.

Using JDBC may restrict the portability
of your application if not implemented with
some forethought. For example, some JDBC
drivers may be available only on certain
platforms, thereby limiting your applica-
tion.

To keep your application as portable as
possible, provide a means for the user to
specify the JDBC driver name. This can be
done through either a GUI, the jdbc.drivers
system property or a similar properties file.

Developing Your Installation Program
Having developed a platform-indepen-

dent application, you also may want to con-
sider providing a platform-independent
installation program for your application.
help with this endeavor, you may want to
consider using one of the Java installation
programs available. They don’t come with
the JDK but are available from various third-
party vendors. Two of the major players in
this market are the InstallShield Java Edition
2 (www.installshield.com/java/) and Instal-
lAnywhere (www.zerog.com) from ZeroG
Software.

If you’re developing an n-tier distributed
application, you may also want to consider
automating updates to your classes. This
can be made easier through the use of an
application server, which in many cases
may remove the need for a separate instal-
lation program.

Certifying Your Application as 100%
Pure Java

If you follow the above guidelines for plat-
form-independent application development,
you should already have a fairly “pure” appli-
cation. To test just how pure and to look for
possible problem areas you may have
missed, check out several free testing tools
available from the 100% Pure Java home page
at www.javasoft.com/100percent/.

If your application is to be a commercial
product or even a high-visibility internal
product, you may also want to consider get-
ting it certified as 100% Pure Java and
obtaining the logo. Details of this applica-

tion process are beyond the scope of this
article but are available from the 100% Pure
Java home page.

Resources:
Updating 1.0 Source Files to 1.1:

http://java.sun.com/products/jdk/1.1/doc
s/relnotes/update.html

Internationalization support in JDK 1.1:
http://java.sun.com/products/jdk/1.1/doc
s/guide/intl/

100% Pure Java home page:
www.javasoft.com/100percent/

InstallAnywhere by ZeroG Software:
www.zerog.com/

InstallShield Java Edition 2 by InstallShield:

www.installshield.com/java/
The Java Developer Connection (JDC):

http://developer.javasoft.com/
Doug Lea, Concurrent Programming in

Java: Design Principles and Patterns,
Addison Wesley.

About the Author
Steven Gould, a consultant for Deloitte & Touche Con-
sulting Group/DRT Systems (www.drtsystems.com) in
Dallas, develops primarily in C++ and Java under
Windows NT and various Unix platforms. He is a Sun
Certified Java developer and a Microsoft Certified
Solution Developer. Steven can be reached at
73774.2356@compuserve.com.

?
?

It’s ironic how sometimes the simplest
ideas can turn out to be the most develop-
ment-intensive. This month’s Widget Facto-
ry participant is the seemingly modest
JSpinner control, which lets you constrain
user interface selections by using arrow
buttons or up/down keystrokes to incre-
ment or decrement values, typically in a
field. JSpinner comes with a whole family of
siblings to handle numbers, currency, per-
centage, date, time, lists and custom val-
ues. It supports multiple field elements,
custom renderers and a compound model
to make it all possible.

The table at right shows the various
spinner controls we’ll be implementing.
JSpinner and JSpinnerField are the basic
classes. The others stand as good examples
of what can be done with a well-designed
premise. You’ll rarely tend to use JSpinner
directly. You’ll usually reach for JSpinner-
Field or one of its subclasses to do specific
work. Figure 1 shows the JSpinner family at
work.

It’s worth noting that this installment of
the Widget Factory has a large number of
listings, but most of the classes involve
only a small amount of code. The main
classes, like JSpinnerField, DefaultSpinMod-
el, DefaultSpinRangeModel and DefaultRen-
derer, do most of the work. The SpinTime-
Model and SpinDateModel are relatively
uncomplicated, for example, as are various
JSpinnerField extensions. Several of the list-
ings are merely interfaces that maintain
flexibility in our design, supporting reuse
and extensibility.

Architecture
The JSpinner architecture uses several

interfaces to maximize flexibility. The Spin-
Model interface defines the methods
required to access the model, which repre-
sents values in the JSpinner architecture.
The SpinModel contains one or more
instances of a class that implements the
SpinRangeModel. Listing 1 shows the Spin-

Model interface. The SpinModel contains
ranges that can be accessed by a field ID.
These identifiers map directly onto the field
identifiers provided by the text Format
classes in the Java API. The SpinModel
always has an active field and can get and
set a list of field IDs. This is important when
you need to switch between locales
because the subfield order is not always
the same. We also support the ChangeLis-
tener interface so that views can be updat-
ed when the model changes.

The SpinRangeModel is very much like
the BoundedRangeModel provided by the
Swing API, but it supports the use of deci-
mal values. Listing 2 shows how a Spin-

RangeModel allows you to set and get the
currently selected value, a minimum and
maximum value and an increment (extent),
and whether the model wraps or not when
it hits a boundary. In contrast, the Bounded-
RangeModel doesn’t permit the maximum
value ever to be selected and is restricted
to integer values. It also knows nothing
about wrapping values, so it was necessary
to invent a new model for the JSpinner con-
trols. The BoundedRangeModel also sup-
ports the ChangeListener interface, which
is used by the SpinModel to detect changes.

The SpinRenderer interface is designed
to support custom renderers in JSpinner
controls. The only required method is
called getSpinCellRendererComponent and
returns the rendering component. Listing 3
shows the SpinRenderer interface. We
expect a reference to a JSpinnerField, the
current value object, a flag indicating
whether we have the focus, a Format
instance and the field identifier for the cur-

The strength of these widgets lies in
their customizability – and in the lessons

learned from effective design
by Claude Duguay

JSpinner
Provides a pair of up- and down-arrow but-
tons and operates on a SpinModel to incre-
ment or decrement values. It handles keyboard
events as well. It’s up to other components to
watch the model and update their views when
they receive a ChangeEvent.

JSpinnerField
A basic numerical spinner that uses a Default-
SpinRenderer and DefaultSpinModel to man-
age a single range of values. A SpinModel
may contain more than one SpinRangeModel,
but the JSpinnerField requires only one. This is
the base class for all the other family mem-
bers. It takes responsibility for certain mouse
events, listening for model changes and focus
handling.

JSpinnerPercent
The percentage spinner uses the NumberFor-
mat.getPercentInstance to format a locale-
dependent percentage field.

JSpinnerList
The string list spinner uses a ChoiceFormat to
format a list selection. This is a simple field,
useful for handling small lists of selected
options.

JSpinnerCurrency
The currency spinner uses the NumberFor-
mat.getCurrencyInstance to format a locale-
dependent currency field. This is a compound
field that supports incrementing and decre-
menting the integer and decimal values inde-
pendently of each other.

JSpinnerTime
The time spinner uses the DateFormat.getTime-
Instance to format a locale-dependent time
field. This implementation uses a SpinTimeMo-
del to map the Calendar object onto a Spin-
Model. It is a compound field with three ele-
ments.

JSpinnerDate
The date spinner uses the DateFormat.getDate-
Instance to format a locale-dependent date
field. This implementation uses a SpinDate-
Model to map the Calendar object onto a
SpinModel. It is a compound field with three
elements.

JSpinnerColor
This is a color selection spinner example of
using a custom SpinRenderer.

The JSpinner Family of Classes

JSpinner

40 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 4 1999 http://www.JavaDevelopersJournal.com

41VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Enterprise Solutions
Conference
www.jumpstart99.com

rently selected field. We’ll cover this in
more detail when we implement the
DefaultSpinRenderer.

Figure 2 shows the basic relationship
between JSpinner, JSpinnerField and the
simplest model configuration.

The JSpinnerField class is the parent of
all the other widgets implemented in this
article. The JSpinner class handles the but-
tons and up/down activity. It operates
directly on the model and can be used for
other purposes requiring up/down activi-
ties. That’s why it was given the big “J” pre-
fix. You can create an arbitrary SpinModel if
you like, regardless of whether you use a
view to watch the results. Notice that
change events from the SpinRangeModel
are sent to the SpinModel. This happens
automatically and you can watch for the
SpinModel events, comfortable in the cer-
tainty that you’ll never miss any other
change events.

Modeling
The SpinModel and SpinRangeModel

interfaces need concrete implementations
to provide the functionality they expose.
The DefaultSpinModel and DefaultSpin-
RangeModel provide a generic set of capa-
bilities that most of the controls in this arti-
cle use. Listing 4 shows the DefaultSpin-
Model class. The internal list of SpinRange-
Model instances is maintained by a
hashtable that is accessed by a fieldID Inte-
ger. A separate, ordered list of fieldIDs is
held in a Vector object, as are the registered
change listeners. We also keep an active-
Field value to indicate the currently active
SpinRangeModel.

To make life easier, we expose three con-
structors. The first simply creates an empty
model. The second assumes we will use a
single SpinRangeModel and takes the same
set of arguments, creating the SpinRange-
Model automatically. The third constructor
assumes that we plan to use two Spin-
RangeModels and does the same thing,
automatically creating both for us. More
than two subfields would make the con-
structor too complicated, so we assume it’s
just as easy to add fields outside the con-
structor.

Listing 5 shows the DefaultSpinRange-
Model class. The basics are pretty simple,
with the constructor accepting each of the
arguments and get/set accessors provided
for each of the attributes. Worth noting,
however, is that the stateChange event is
not fired unless the setValueIsAdjusting
method is called with a false argument.
This is intended to defer the change event
to avoid inconsistent states. My imple-
mentation is less robust than the Swing
BoundedRangeModel, but it works well

enough in practice.
The JSpinner class

is provided in Listing
6. The constructor
expects a SpinModel
instance and creates
the up and down but-
tons using the Swing
BasicArrowButton
class. We register
JSpinner as both an
ActionListener and a
KeyListener to handle
increment and decre-
ment operations on
the model. Most of the
code that acts on the
model is in the incre-
ment and decrement
methods that handle
boundary conditions,
deciding whether or
not to wrap. The
JSpinner class also
handles right- and left-
arrow keystrokes and
changes the active
field in the SpinModel.
To make this work,
you have to register
JSpinner as a KeyLis-
tener form elsewhere,
since the buttons
never really get the
focus.

JSpinnerField
The JSpinnerField

(see Listing 7) is the
simplest instance of
the JSpinner family of
controls, but because
it’s the parent of all
the other family mem-
bers, it’s designed to
handle general cir-
cumstances. As such,
it contains more code
than most of the
other classes in this
article. There are
three constructors to
let us create an
empty JSpinnerField,
one with a single
SpinRangeModel, or
one with an arbitrary
model, renderer and field Format class.
Because we need to refresh the view after
construction, we delegate subcomponent
creation to an init method. This allows sub-
classes to control the call to refreshSpin-
View, which tends to be specific to selected
implementations.

The setLocale method sets a localized
instance of the Format class associated
with the control. This is also overridden by
child implementations. The updateField-
Order method is required to determine
what the correct field order is for a given
locale. This is handled in a separate utility

JSpinnerField

uses uses

uses

uses

Ch
an

ge
Ev

en
t

ChangeEvent ChangeEvent

JSpinner

SpinModel

SpinRangeModel
(integer)

SpinRangeModel
(decimal)

Figure 3: JSpinner, JSpinnerCurrency and model relationships

JSpinnerField

uses

uses

uses
Ch

an
ge

Ev
en

t

ChangeEvent

JSpinner

SpinModel

SpinRangeModel

Figure 2: JSpinner, JSpinnerField and model relationships

Figure 1: JSpinnerTest with U.S. locale selected

http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal42

43VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

class called LocaleUtil (see Listing 8),
which effectively sorts the fields based on
their starting location in the Format object.
It also implements a findMouseInField
method that lets us determine which field is
active when the mouse is clicked on a
JSpinnerField.

The JSpinnerField does the rendering
through a SpinField class that expects a ref-
erence to the JSpinnerField object. As you
can see in Listing 9, this class extends JPan-
el and uses a Swing CellRendererPane to do
the actual rendering. The paintComponent
call gets the current SpinRen-
derer and calls its getSpinCell-
RendererComponent method.
We also override the getPre-
ferredSize and getMinimumSize
to return the renderer’s pre-
ferred and minimum sizes.

Listing 10 shows the Default-
SpinRenderer, which extends
JTextField and sets the editable
flag to false. The getSpinCell-
RendererComponent method
returns the current instance
after calling setText with the
current value object formatted
by the Format instance. It also
uses the LocaleUtil.getFieldPosi-
tion method to determine what
the current selection range is
for display if we have the focus.

Simple Extensions
Having just covered the

DefaultSpinRenderer, let’s take a
look at the JSpinnerColor class,
which uses a custom renderer
to spin through a short set of
colors. The ColorSpinRender, shown in List-
ing 11, is pretty uncomplicated; it ignores
most of the getSpinCellRendererCompo-
nent arguments and expects to see a Color
object as the value. We use a white border
to indicate the focus.

Listing 12 shows how simple the JSpin-
nerColor class is to implement. We extend
the JSpinnerField class with a custom spin
renderer and a simple model that ranges
from zero to the length of our list. We store
our list of Color objects in a Vector for con-
venience. To avoid formatting issues, we
declare an empty updateFieldOrder method.
We override the refreshSpinView to update
the view when the selection changes. All we
have to do is get the active model field and
range, and set the current list selection
based on the active model value. Calling set-
Value on the SpinField gives the renderer
access to the active object.

The JSpinnerList class (see Listing 13)
does the same kind of thing without the
extra complication of a custom renderer,

given that it handles a string list. It over-
rides the setLocale method because
explicit strings are not localizable. The
JSpinnerList and JSpinnerColor widgets
demonstrate how easy it is to subclass
JSpinnerField to create customized behav-
ior. There is no restriction in the data you
choose to represent, since both the model
and renderer are under your control. Of
course, these implementations are not
internationalizable unless you use
resource bundles or account for it directly
in your code.

Internationalizable Spinners
The last four variations on our theme

capitalize on the JSpinnerField infrastruc-
ture to handle internationalization through
the Java Format class. Listing 14 shows the
JSpinnerPercent class, which extends
JSpinnerField and implements very little
code. The constructor creates a model that
uses 0.01 as an increment and sets Num-
berFormat.getPercentInstance() as the for-
mat class. We override setLocale to reset
the Format class if necessary.

Listing 15 shows the JSpinnerCurrency
control, which is similar but extends the
model to use two ranges. One handles the
integer portion of our currency field and
the other handles the decimal value. We set
the NumberFormat.getCurrencyInstance()
format in both the constructor and the set-
Locale methods. The only other thing we
need to do is override the refreshSpinView
method to properly set the value from the
two model ranges. Figure 3 shows the rela-

tionship between classes in the JSpinner-
Currency control.

The last two widget variations are only
slightly more complicated because they
use custom models. Listings 16 and 17
show the TimeSpinModel and DateSpin-
Model, respectively. Both extend the
DefaultSpinModel but override the
setRange and getRange methods to control
where the values come from. They map the
Calendar class values onto the range mod-
els as they are being retrieved and manage
the Calendar instance that represents the

time or date with a couple of
accessor methods. You can do
something similar to manage
your own variations on a Spin-
Model.

The JSpinnerTime and JSpin-
nerDate classes are in Listings
18 and 19, respectively. They
both override the constructor,
setLocale and refreshSpinView
methods, but are otherwise
unencumbered. Listing 20
shows the JSpinnerTest har-
ness used to test the controls.
Figure 4 shows the way it looks
when the French locale is
selected.

Summary
As you’ve seen, despite all

the listings, JSpinner controls
are actually quite simple to use.
By providing customizable
model and renderer inter-
faces, the variations you can
implement are wide open, as
they should be with any open

architecture. All the internationalization
issues are essentially transparent, thanks
to the Format classes provided in the
Java API. It would have been easy to write
this article around a simpler implementa-
tion, but the strength of these widgets is
largely in their customizability and in the
lessons learned from effective design. I
hope you’ll agree that even this simple
widget turned out to be instructive and
worth the investment.

About the Author
Claude Duguay has been programming since 1980.
In 1988 he founded LogiCraft Corporation, and he
currently leads the development team at Atrieva
Corp. You can reach him at Claude@atrieva.com.

claude@atrieva.com

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

Figure 4: JSpinnerTest with the French locale

44 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 4 1999 http://www.JavaDevelopersJournal.com

45VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Kuck &
Associates

www.kai.com

46 • VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Your company has grown
beyond anyone’s expectations.
Internet orders have skyrock-
eted and management is
ecstatic. Everyone is as happy
as a bug in a rug. Everyone,

that is, except the system adminis-
trator. This unexpected explosive growth has caused
many new headaches. The server can no longer han-
dle the huge number of hits every day. Raw materi-
als must now be purchased, assembled into products
and shipped out faster than the current system can
keep track of inventory and purchases. New depart-
ments have been added, and new employees in
these departments need various levels of access to
various areas of the system. All in all, it’s a nightmare!

The system administrator can’t undertake a project
like this on his own. A large development team must
be created to tackle such a job. Because of its Web-
friendly architecture, Java will be the cornerstone of
the new system. What’s needed now is a tool that will
permit the organization and planning of such a large-
scale project. This tool needs to be able to reuse old
components, blending them with new ones. The team
isn’t worried, however, because they know…HOW.

HOW Professional Edition 2.0 for Java is an inte-
grated set of tools that supports object-oriented devel-
opment of business applications. It works with your
favorite tools to enable quick and efficient design and
development. It does this by utilizing reusable busi-
ness objects and technology components. HOW helps
you design and build the objects your applications
need. These reusable components are then snapped
together into applications that can be scaled to meet
your needs.

Riverton Software Corporation, the creators of
HOW, have boiled down every business application
into three elements.
1. Database: where all the information is stored
2. Presentation, or the “front end”: how clients

and staff gain access to the information (e.g., clients
placing orders, staff retrieving sales figures)

3. Business logic: the set of “rules” that govern the
flow of data (e.g., minimum orders for clients,
employee access to certain records)

In many cases, logic is embedded too deeply into

the presentation code. Although this type of scenario
is fine for small organizations, it causes problems in
larger ones. Difficulty in maintenance and reuse of
components, and limitations in both performance and
scalability, are but a few of the challenges posed by
such a system. Any change in the business rules may
result in the need to rewrite the front-end code, which
would keep the system down.

HOW presents a better alternative by keeping
these logical layers separate. In this “partitioned” archi-
tecture, the code for each layer is independent of the
other. This presents several advantages:
• Flexibility of applications: Change of a business

rule shouldn’t require a change in any of the other tiers.
• Reuse of application components: The same

set of business rules can be applied to several tiers.
• Enhancement of team development efforts:

The code for a user interface, for example, can be
changed without affecting the database or other
tiers.

HOW enables you to build a foundation of busi-
ness objects and technology components while com-
pleting projects on time and within budget. With HOW
you define projects and establish shared libraries to
contain new or existing components. HOW brings
together a number of tools (see below) to help you
achieve this goal. You can then define the additional
pieces you need, “snapping” them together as you go.
• The repository and its explorer views enable

the storing and retrieving of information about
objects and projects.

• The Use Case Builder and Use Case View Builder
define and summarize how systems are used.

• The Business Rule Builder defines and classifies
business rules.

• The Workflow Builder provides for modeling
business workflows and relating them to the appli-
cations that execute portions of the workflow.

• The Domain Builder enables the creation of class
objects and their interrelationships.

• The Interaction Builder defines how object
instances interrelate.

Installing HOW
There are basically three types of environments in

which HOW can operate:

HOW Client
HOW Client can be used by application developers

to model, generate and run Java applications on a
local system. To install HOW on a client machine, the
following system requirements apply:
• Pentium 100 MHz processor
• 32 MB of RAM
• VGA 800x600 or better color display
• Two-button mouse or equivalent pointing device
• CD-ROM drive
• 80 MB or more disk space

In the client environment, HOW is designed to
accompany other development tools. The following
third-party software is necessary:
• Windows 95, version B or higher, or Windows NT,

version 4.0 or higher with Service Pack 3
• JDK 1.1
• Any Java IDE or tool
• One of the following data modeling tools: Logic

Works’ ER win /ERX version 3.0 or 3.5, or Sybase’s
PowerDesigner version 6.0 or 6.1

• Microsoft Access version 7 (Windows 95) or 8 (Win-
dows 97), for producing reports based on the infor-
mation in the HOW repository

• Microsoft Word 7.0 (Microsoft Office 95) or 97
(Microsoft Office 97), for producing documents that
include objects from the HOW repository

• Microsoft Visual Source Safe, version 5.0, for use
with HOW’s configuration management features
(optional)

HOW Team Repository
HOW can be installed on a network-accessible

machine. This will allow multiple developers to
access a common repository without affecting each
other’s work. The hardware requirements for
installing HOW Team Development Server software
are the same as those for the client, except that only
10 MB of free drive space is required. The only soft-
ware requirement is that the machine be equipped

PRODUCT REVIEW

HOW Pro Edition 2.0
by Riverton Software

Utilize reusable business objects
and technology components

by Ed Zebrowski

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
HOW Professional Edition
2.0 for Java
Riverton Software Corporation
One Kendall Square, Building 200
Cambridge, MA 02139
Phone: 617 588-0500
Fax: 617 588-0412
E-mail: info@riverton.com
Web: www.riverton.com

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

47VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

with Windows NT 4.0 or higher with Service
Pack 3.

HOW Application Server
These are machines that run HOW-generat-

ed applications; they require NT 4.0 with Service
Pack 3 and any third-party software that the
application requires. Windows 95 machines can-
not act as application servers, but NT 4.0
machines can be both client and server.

Choose the environment that best suits your
needs and desires. Make sure your machine
meets the necessary requirements and you’ll
find installation no more difficult than any other
CD-ROM application.

HOW and Java
HOW is used to generate Java classes that

are the basis for business applications or applets.
These components are 100% Pure Java and can
be executed on remote servers by using either
DCOM or CORBA. They can then be loaded into
your favorite Java development environment for fur-
ther enhancement.

HOW’s Java support comes in the form of a “Java
Cartridge.” It allows for the following functions:
• Generation of design objects into Java classes,

including JavaBeans
• Generation of queries into classes that implement

JDBC-embedded SQL statements
• Generation of class methods that allow convenient

traversal of associations

Using HOW: A Brief Example
When HOW is first opened, it displays the Reposi-

tory explorer. This contains all the objects you define
with HOW.

By clicking on File New Project you do just that: cre-
ate a new project. This will display the Projects Proper-
ties dialog box, including two tab pages (see Figure 1).
One is Object Info, which provides general information
about the project, and the other is Libraries, which is a
list of all the libraries used in the project.

In the Name field, type the name of your
new project, then choose OK. It’s now necessary
to create a library that will hold the objects you
create as part of the project. To create a new
library, perform the following steps:
1. Click on the Libraries tab of the Repository;
in the Library pane of the Repository window
right-click on the Library1 name.
2. Select Properties from the popup menu;
HOW displays the Library Properties dialog box,
which displays general information about a
library.
3. Click on the name of the library to make it
current, then click “Set as Default.” When a
library is the default, newly created objects will
be stored there. Selecting File Import will allow
you to import objects into the library.

HOW represents a major breakthrough for
developing and organizing business develop-
ment projects, both large and small. It’s relative-
ly easy to use, and works well with your favorite

IDE. If you find yourself in the market for such a tool,
by all means give it a try.

About the Author
Edward Zebrowski is a technical writer based in the
Orlando, Florida, area. Ed runs his own Web devel-
opment company, ZebraWeb, and can be reached
by e-mail at zebra@rock-n-roll.com.

zebra@rock-n-roll.com

Figure 1: The Projects Properties dialog box is
the starting point for creating new projects.

Java DEVELOPER’S Journal

Java is growing by leaps and
bounds. New extensions for
enterprise development, 2D
graphics, servlets, speech, etc.,
are being added to it. This

tremendous growth is making it
tough for beginners as well as

experts to keep themselves up to date.
With the growing popularity of Java for providing

enterprise-wide e-business and e-commerce applica-
tions, a sudden requirement for a robust and user-
friendly IDE has been felt by developers throughout
the Java community.

Whether you’re leading a team or working as a
developer or an independent consultant, your needs are
always the same. Everybody wants to release the project
as scheduled, with fewer bugs and good documentation,
and without spending hours remembering various APIs.

Until now this was just a dream, but with the release
of VisualAge 2.0 (Enterprise Edition) it has become a
reality. VisualAge helps you – right from learning Java to
building complex applications – with updated docu-
mentation. You can test new syntax without compiling
the complete project and you can reduce the turn-
around time for any bugs by using the powerful debug-
ger. There’s no need to remember syntax or use coding
help available until the instance variable of a class.

VisualAge has a concept of repository, meaning a
single file that stores all other files within itself. If you
import a new Java or class file, VisualAge will add that
file to its repository. The repository has a built-in source
code control system in which all the classes and meth-
ods can be versioned.

Feature Set Available with
VisualAge 2.0 (Enterprise Edition)

VisualAge for Java comes with many powerful fea-
tures and utilities to create a complete environment for
building large, complex applications. I just looked at
the “readme.txt” file and was amazed by the feature
list. I feel that all you need is an operating system and
VisualAge for Java and you’re all set to make even the
most complex Java applications. Here’s a brief list of
features that come with this IDE:
• An integrated development environment with visu-

al programming support for creating Java applets
and Swing beans

• Support for a team of programmers to share and
maintain source code in a single repository

• Support for JavaDoc output
• Integration with VisualAge TeamConnection,

ClearCase and PVCS
• Enterprise Toolkits for AS/400 and Workstation,

including high performance compilers for Java and
a remote Java debugger

• Enterprise Access Builder for SAP R/3, JDBC, C++,
RMI

Installation
I installed VisualAge on a Pentium 166 MHz with

64 MB RAM and a Windows NT 4.0 (service pack 3).
The installation CD guided me through the various
steps and it was a cakewalk. During the installation,
you can select the features to be installed. You can also
specify the repository location – either local or on a
different server. I installed the repository on the local
machine.

Feeling Comfortable
It took me only a couple of minutes to get adjust-

ed to the WorkBench (the main window). The controls
are laid out in a very user-friendly manner. Different
panes show the Projects, Packages, Classes, Interfaces,
Management and Problems. Within five minutes I was
ready to create an application using Visual Composition.
The creation process was fun – just “drag and drop” and
connect, and the application is ready. Within minutes, I
created my first complete application without coding.

I love coding, but I hate to cram APIs. So I tested
the coding help that the IDE provides. I was amazed
that the IDE helped me until I saved the code. Save
your code and the code is compiled automatically! No
more using the JDK’s javac command. It was wonder-
ful, and if you make a mistake while coding, it will save
the method with a cross on top of it.

VisualAge’s Strengths
The main strengths of VisualAge lie in its coding,

debugging, multiuser development and its advanced
features.

Coding
• Coding help – Type a class, press ctrl+space and

you have access to all the available public methods
and class variables (see Figure 1). When you select
the desired method, you will get the input parame-
ters required for the method. We no longer have to
remember all methods in a class.

• Repository and code versioning – You can maintain
multiple versions of classes and methods. Don’t
worry about messing up with code because you can
always revert to any version you want.

• Scrapbook – If you need to try out new syntax but
don’t want to compile the complete project, then
use scrapbook. Just type the line of code you want
to try with complete context and execute it. You can
type the following code and execute :

java.util.Vector vec = new java.util.Vec-
tor();
vec.addElement("Item1");
vec.addElement("Item2");
vec.addElement("Item3");
System.out.println("Size of Vector is : " +
vec.size());

• Bookmarks – If you’re working on a huge project
with hundreds of classes or need to jump to differ-
ent classes for source code modifications, you can
save time by using bookmarks to scroll between dif-
ferent classes or methods.

• Incremental Compilation – This comes in handy no
matter what size your project is. It tells you the
source of any problem as you save your code.

• Java docs generation – Documentation has always
been a problem. With the growing popularity of
HTML documents, developers have been forced to
learn and write documentation in HTML. VisualAge
comes to the rescue again. Just type in your com-
ments for a class or a method in plain text and you
get all the HTML documentation ready for release.

Debugging
The debugger has been one of the compelling

reasons for my shifting my entire development to

PRODUCT REVIEW

VisualAge for Java 2.0
by IBM

The ideal IDE for both beginners and experts
by Niraj Jetly

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

VisualAge for Java 2.0
IBM Corporation
Armonk, NY
Phone: 800 426-4968
www.software.ibm.com/ad/vajava

Minimum System Requirements:
Windows 95/NT 4.0 with service pack 3, TCP/IP commu-
nication protocol, Pentium processor, SVGA 800x600 dis-
play, 64 MB RAM, Frames-capable Web browser, Netscape
Navigator 4.04, or, Microsoft Internet Explorer 4.01,
Java Development Kit (JDK) 1.1 for deploying applica-
tions or JDK 1.1.2 for deploying applications using Swing
components.

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

49VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

VisualAge. I’ve noticed that the bug
turnaround time is significantly
reduced if my team uses the Visu-
alAge debugging facility. We can
easily step through the code, have
a look at all the variables and dis-
able all the breakpoints (so there’s
no need at all to remove any
breakpoint). The strength of the
debugger is a real help when
you’re writing servlets. Run your
servlet from the HTML page in the
browser and debug the Java code
in VisualAge.

Multiuser Development
VisualAge also supports a multi-

user development environment. We
can install the repository on one serv-
er and the entire development team can act as clients
to the central repository.

Advanced Features
VisualAge has built-in support for many features,

such as RMI, CORBA, Domino AgentRunner and San
Francisco wizard.

Areas of Improvement
I have been addicted to VisualAge ever since version

1.0. While new and powerful features have been added
in version 2.0, some of the earlier features are somehow
missing.

Design Time Debugging
I do a lot of JavaBeans development, so I have to

make lots of customizers for JavaBeans. In version 1.0
I could put a breakpoint in the customizer code and
run it in a debugger, but in 2.0 this feature was turned
off. This makes the process of debugging a customiz-
er a little more time consuming. I hope that VisualAge
3.0 will include this feature again.

Online Help
This is another area where you may face some

problems. I installed VisualAge on Windows NT 4.0
and the online help always worked fine. But if I install

the same IDE on Windows 95, the pos-
sibility of installing it properly is greatly
reduced.

Conclusion
I’ve been working on Java for more

than a year. I tried many IDEs, but all
of them had something missing. When
I used VisualAge, despite the small
problems I mentioned above, I found
it is an excellent IDE. The problems I
mentioned are very specific and arise
only if you’re doing highly specialized
work (and they were discovered only
after more than a year). I’m sticking to
VisualAge because its other features
far outweigh any problems I’ve come
across. This tool is ideal for both
beginners and expert Java developers.

It is the definite choice of any project leader or man-
ager who wants to reduce the bug fix turnaround
time. VisualAge can be exceptionally useful whether
you are working in a single-user or multi-user devel-
opment.

About the Author
Niraj Jetly is the project leader for the award-winning
product, ROAD:BeanBox. He has been working
extensively on Java and can be contacted at
njetly@specializedSoftware.com.

Figure 1: Coding help on typing ctrl+s[ace after a class name

njetly@specializedSoftware.com

AQ

AQ AQ

AQAQ

AQ

Lee Garrison
Java Product Marketing Manager KL Group
Alan Armstrong
JProbe Product Marketing Manager KL Group

JDJ: Alan, give us a little overview of JProbe 2.0. What
does it offer?
Armstrong: JProbe is a tool to help developers search and
destroy performance bottlenecks and memory hogs in their
applications. It’s a way to basically profile an application and
then afterwards – and even during – take a look at the mem-
ory usage characteristics of the application and also what parts
of the application are taking the most amount of time….It
helps you quickly focus on the parts of your application that
you really need to tune, from a memory perspective and also
from a performance perspective.

JDJ: Some new features in 2.0 aren’t available in the previ-
ous releases. Can you give us an idea about those?
Armstrong: The whole area of memory debugging has
really been improved in version 2.0, and real-time memory
debugging wasn’t available in the previous release. You know,
in a lot of ways people think that memory in Java is not a prob-
lem, but that’s not actually the case. When you start develop-
ing with Java, you find that because of the number of objects
that are created and also because of the way that Java handles
memory, things can be left allocated and applications can con-
tinue to consume memory when you wouldn’t think they
would because of garbage collection. So what JProbe memory
debugger allows you to do is to find those objects that are no
longer being used but are still in memory and then zoom in on
that area of the application, change the source code and
reduce the memory requirements of your application.

Rhody: A lot of us are used to just running our Java code
and seeing the results, and I don’t think too many of us
think about it. I think you mentioned something that is a
viable place to look for these memory leaks. But I guess the
biggest question in my mind would be, once you can identi-
fy them, what can you do about them? How much of a help
can you provide for reducing those kinds of problems?
Armstrong: Let me give you an example. Because Java is
such an object-oriented language, a lot of people tend to use
objects basically willy-nilly, without thinking about the penalty
that you can pay because of overuse of objects. For example,
if you’re manipulating simple kinds of data, it may be very
much more effective to just use native types such as [in] or

double. In fact, in our own JClass product line, we had been
using an object for our live table in order to maintain the coor-
dinates of a particular cell in a grid; by using JProbe on our
own JClass components, we were able to find out that that
was actually a major bottleneck in the component. And we
have very experienced object-oriented developers on our
staff. So it is in the area of changing the algorithm but also
finding out the best ways to use classes in Java.

Rhody: That sounds pretty good. What are some of the
kinds of things you can identify with this? What level of detail
do you go into and do you hook into the virtual machine?
Armstrong: Sure. It’s fairly tunable, actually. You can zoom
into a very fine granularity of detail or you can back off and
just say I am sort of interested in a core screen of information.
It depends on what kind of information you’re looking for. For
example, you may not have any idea at first what part of the
application is taking so much time, why this thing is so slow,
and so you look at things from a very high level. But then
when you narrow it down, you can turn on some of our
unique technology to really get down to the line of source
code that’s causing the problem.

Rhody: What do you provide in the way of statistics? I
mean, what are some of the gross things that you can get
on a level like it? Do you tell them how much memory is in
use over a given period or that kind of thing?
Armstrong: It depends on whether you’re talking about
the memory side or the performance side. On the perfor-
mance side, there are nine different measurements that you
can make on code including the cumulative time spent in a
method, the sort of exclusive time spent in the method, the
number of times a method is called – and I could go on.
JProbe collects all of that information and then allows you to
sort things and paint the call graph display, which is a graphi-
cal thing that highlights where the time is spent. JProbe will
sort things, build the call graph and paint it depending on
what kind of criteria you’re after.

Rhody: Can you tie in JProbe to an IDE like JBuilder?
Armstrong: Absolutely. JBuilder and Semantic Café and also
Powersoft and PowerJ – all have opening PIs that we work with.

Rhody: So you could compile your code and then run it
using your VM and then get information and still do every-
thing from their API.
Armstrong: Absolutely. The interesting thing is we have an
excellent relationship with all of the IDE vendors. Right from
the word go, JClass components were embedded in the IDEs.
You’ll see them in Semantic Visual Café, Inprise J-Builder,
Sybase PowerJ and IBM Visual Aides. We have very close
working relationships with all of those folks, so on the Profiler
side we were able to really…to work together well on that. It’s
something that is very important to us.

Rhody: What about the present with JClass? What do we
have to look forward to?
Armstrong: For [an answer to] that I’ll pass it over to Lee
Garrison. He’s the JClass product manager.
Garrison: We were talking about a couple of interesting
things today with respect to the JClass announcements. The
current release of JClass, the 3.6 version, is out and provides
common API support across all of the major JDK releases
including Java 2.0 with Swing 1.1. That’s a real benefit for
developers who want to have the flexibility of migrating their
code across multiple JDK versions without having to rewrite
anything. They can use the JClass 3.6 release and simply
recompile with the different versions in JClass 3.6. But we’re
also working on a new generation of JClass, and the next
major release of JClass will be specifically structured for Java
2.0. It will really optimize for the Java 2.0 features, pluggable
looking field, drag-and-drop. Components like JClass chart will
make use of the 2D API. So it will really be a benefit for devel-
opers who want to start new projects and build specifically for
Java 2.

Another interesting question that we often get asked and
that I might just point out to you is what the impact of Swing
has on the other JClass components, and clearly Swing is a
good thing. It’s providing base-level functionality in the core
classes, and things like JTable, the grid in Swing, is great for
very simple display of tabular data. But we found that there
are quickly limitations to that, particularly in mission-critical or
scalable environments. JTable doesn’t perform very well
beyond a couple hundred rows, and it’s not very customizable
if you want to change cell appearance on a cell-by-cell basis.
That’s where things like JClass Live Table as a premium com-
ponent come into play. It can handle millions of rows with
real-time scrolling performance. It can be completely cus-
tomized on a cell-by-cell basis. It automatically data-binds to
JDBC objects as well as native data sources in Visual Café or J-
Builder.

Rhody: If I can dive a little bit into that, what about tying
something like that into some more abstract data source
like a result set or something else that would be transferable
or in some sort of three-tiered fashion? I am doing a lot of
distributed work with EJB servers and we typically have the
database on the back tier and the EJB in the middle and
want to transfer data.
Garrison: We have a couple of research projects looking
into things like that. We haven’t stepped into the EJB space
yet, but we are certainly aware of it and looking at it. And
there is a natural evolution of something like the JClass Data
Source Bean, which is a nonvisual hierarchical data object
working in those kinds of environments.
Armstrong: If I could just make a comment. The extent
that those middle-tier servers are based upon the standard
result sets, there should be no reason why JClass wouldn’t
work with them.

SYS-CON RADIOSYS-CON RADIOSYS-CON RADIO S

YS
-CON

R
A

D
IO

w
w

w
.s

ys-con.com

INTERVIEW
Recorded live at SYS-CON Radio, host Chad Sitler and JDJ Editor-in-Chief,
Sean Rhody spoke with Lee Garrison and Alan Armstrong of KL Group

Java DEVELOPER’S Journal50 • VOLUME: 4 ISSUE: 4 1999 http://www.JavaDevelopersJournal.com

http://www.JavaDevelopersJournal.com 51Java DEVELOPER’S JournalVOLUME: 4 ISSUE: 4 1999 •

Jinfonet
www.jinfonet.com

AQ

AQ AQ

AQAQ

AQ

Mike Merritt
Senior Director Sybase

JDJ: How is Sybase implementing the Java technology?
Merritt: Actually, Sybase is implementing the Java technolo-
gy in all three tiers. We have Java support in the database, in
the middle tier and in the development and client site. I start-
ed the back-end move, back toward the client, and in the adap-
tive server family we actually support Java in the database.

We support Java store procedures, which are becoming
more prominent across the database vendors. But we also
support Java as a data type within tables within the database.
This allows you to do powerful things.

Coming into the database, Sybase has award-winning
JDBC activities, a type-4 pure Java JDBC implementation
that’s very well accepted and provides the type-4, meaning
that you don’t have to install anything. And since it’s pure
Java, you can download it. You can run it from anywhere.

In the middle tier, Sybase has the Sybase Enterprise Appli-
cation Server, which we actually started some time before the
whole Enterprise JavaBean effort began. We worked with Java-
Soft on the Enterprise JavaBeans since the beginning and actu-

ally implemented our first production release over a year ago
based on a nonpublic version of the EJB spec because the tim-
ing was a little bit off. But it was implementing the same level
of abstraction and the same intent and purpose of Enterprise
JavaBeans that you see today with the JB 1.0, and obviously
we’ll soon be EJB 1.0 compliant.

To pull that all together, we also have very strong support
in the development tool arena with the PowerJ development
tool. PowerJ provides the rapid application development
environment that people have become used to, and it’s tight-
ly integrated with the deployment server with Enterprise
Application Servers. You can browse components from with-
in the development environment that are already deployed in
the middle tier. You can create new components and deploy
them directly into the middle tier with the click of a button,
and you can do distributed debugging from the PowerJ
development environment.

We’re really excited about this integration because over
the last few years productivity in application development has
grown quite a bit, and when you start moving to distributed
architectures, it drops that productivity down.

JDJ: What can Sybase offer mainstream development that
other companies can’t?
Merritt: In addition to the Java support, one strength our
platform has is openness in terms of component models. We
support more than Java. If you have C++ code, you can’t just
throw out everything you have; you have to be able to inte-
grate the applications you already have and interface with
them so that you can move forward.

To move existing customers and existing applications for-
ward, there are three things people try to leverage. One is
their code. One is their skill sets and the third is their data.
Now Enterprise Application Server, our adaptor server family,
allows them to migrate data. But in terms of moving applica-
tions, what we’re really talking about is moving the code and
the skill sets forward. So by supporting multiple component
models and, for example, Enterprise Application Server, it
allows people to leverage not only their code – at least to the
extent that it’s reusable in the new environment – but per-
haps more important, the skill set they already have.

We also bring to the table the fact that we’re an Enter-
prise customer. We’re used to dealing with the Enterprise
capabilities of applications. In fact, we’ve been doing distrib-
uted Enterprise applications for eight years, so there are many
Enterprise production applications in Wall Street and all over
that are based on Sybase’s distributed architectures. This is
just the next evolution.

We also have a huge strength in application development
with all of our development tools, PowerJ, Power Builder, etc.
We not only have the knowledge of what it takes to build and
maintain applications in the Enterprise, but the whole para-
digm of development.ment with all of our development tools,
PowerJ, Power Builder, etc. So we not only have the knowl-
edge of what it takes to build and maintain applications in the
Enterprise, but the whole paradigm of development.

JDJ: Do you have a Web site where our listeners can go
to see what Sybase has been up to?
Merritt: That would be www.sybase.com.

Don Roedner
Director of Marketing
Riverton Software

JDJ: Can you tell us a little bit
about the award-winning product,
HOW 2.0?
Roedner: HOW is a modeling
tool, and it won the modeling tools

category. We like to say that HOW is a modeling tool that
extends the concept of modeling beyond just drawing pic-
tures. In fact, the product’s tag line is “Modeling is more than
pictures.” It’s a modeling tool that’s focused on business
application developers. These are people who aren’t neces-
sarily going to have all the skill sets and all the wherewithal
to build serious applications with Java. The whole idea
behind HOW is to augment their skills to provide some
architecture out of the box and to make it easier for main-
stream developers to develop large-scale business apps.

JDJ: And you also concentrate on the Enterprise
JavaBeans?
Roedner: In the next release of HOW for Java [released
this past January], we start generating EJB. We start generat-

ing session and EJ Beans out of business models that are
built in-house. Our direction is to become very focused on
Enterprise JavaBeans and EJB app servers and so on. If I had
a dream, it would be that in a year we’d be perceived as the
de facto standard modeling tool and deployment framework
for building EJB-based app servers in the Java space.

JDJ: What are some other outstanding features of your
product?
Roedner: We like to talk in terms of four really outstand-
ing features, and I’ve mentioned most of them. One is its
ease of use. Because our focus is on the business application
developer, we’ve given a lot of thought to how a modeling
tool ought to behave in that kind of context, and that shows
up in a lot of ways, such as in the approach we take to pre-
sent information to developers. It shows up in the docu-
mentation of the product and so on.

There are a variety of ways in which this is a very easy-
to-use product as compared to other modeling tools. We
built it on top of a real repository. This is a clear differentia-
tor. Most of the modeling tools on the market don’t have a
repository. What this gives us is the ability to strongly support
team development. Our first release in the PowerBuilder
market has proven to be a real strong selling point for us. In

fact, we genuinely support team development, and things
like sharing of application components down at the object
and component level, which most people can’t do.

Another thing that makes us stand out, as I suggested
before, is a tight integration. In the case of Java, we work with
virtually all the development environments. But that tight
integration allows us to generate components into a devel-
opment environment whether it’s PowerBuilder or Visual
Basic or Java. It’s very smart of those environments. For
example, our first-generation product – the PowerBuilder
product – is very smart about how PowerBuilder works. We
generate nonvisual objects to the middle tier. We’re very
aware of PowerBuilder foundation class and so on. You can
say this is comparable to the BB and Java products.

I think the real differentiator for us is that we ship a
framework with the product that allows us to fully integrate
individual components from the pictures that developers
build in HOW. This framework represents an architecture
out of the box, and it’s the glue that ties together all the
application tiers that developers design and then generate.
As a result, people using HOW generate working applica-
tions. They push a button and out comes an application that
automatically operates in a distributive fashion – it’s ready
to go.

SYS-CON RADIOSYS-CON RADIOSYS-CON RADIO S

YS
-CON

R
A

D
IO

w
w

w
.s

ys-con.com

INTERVIEW
Broadcast live at the Java Business Expo in the Jacob Javits Center in
New York City, Sys-Con Radio’s Chad Sitler spoke with Mike Merritt of Sybase and
JDJ managing editor Brian Christensen spoke with Don Roedner of Riverton Software.

52 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 4 1999 http://www.JavaDevelopersJournal.com

53VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

A Screaming Advertisement?
“Give Some Print Space to Other Products!”

Was this issue (JDJ Vol. 4, Issue 3) intended to be
a screaming advertisement for SilverStream? No less
than three major articles were devoted to the product
(two articles and one editorial which was written by a
SilverStream employee). That’s 10 pages out of less
than 70.

If equal time had been devoted to other products, I
don’t think I’d be so disappointed. SilverStream has lots
of competition in the marketplace. Looking at this issue,
and at the JDJ Web site, one wouldn’t know that.

For instance, the most recent review that JDJ has
done for NetDynamics was for version 3.0. Version 4.0
has been available for over a year and has a greatly
improved event model. Using your site as a reference,
one would be left to compare the glowing recommenda-
tions of the most recent version of SilverStream to a more
than two-year-old release of NetDynamics.

Another application server that deserves some men-
tion is WebSphere. It’s currently ranked #1 in the appli-
cation server category of JDJ’s Readers Poll, yet I’ve seen
no mention of it.

In short, give some print space to other products. Try
not to feature the same product in several articles unless
the entire issue is clearly devoted to a single product. It
would be far more helpful to those of us who would actu-
ally like to see a comparison of products rather than a
promotion of a single product.
Grace Frederick
grace@fredtek.com

Thank you for your feedback, but we’d like you to
know that we have no vested interest in any particular
tool. We have not, and will not, anticipate receiving
advertising dollars or any other compensation to run this
type of feature.

Our decision was based solely on their unexpectedly
impressive performance at our
recent “Readers’ Choice Polls.”

–Editor

Love Those JMask-
Field Classes!

I love your JMaskField
classes, especially since I need
to restrict myself to Swing
classes. I took it one step fur-
ther by adding a property
called Mask, which is available
during design time in Visual
Café, and made a new con-
structor with no parameters. In
the setMask method, I execut-
ed some of the code from the
other constructor. It works beautifully. This way it’s also
possible to change the mask during runtime.
Joshua Glickman
JGlickman@globaldirectmail.com

Equal Opportunity?
We’ve been evaluating several products in prepara-

tion for embarking on a Java development project. We
have yet to find any tools we could, in good conscience,
recommend as being the “best” in any category. But, I
was wondering if you guys are interested in some “avoid
like the plague” votes?
We’ve got a WHOLE bunch of those!
Terry Grossman
Terry_Grossman@spe.sony.com

Telling It Like It Is
Concerning Alan

Williamson’s February “Straight
Talking” column (JDJ Vol. 4,
Issue 2): best unbiased article I
have read...ever...thanks!
James Boice
jboice@williard.com

We’re very pleased to have
Alan on our roster of colum-
nists for JDJ. We may not
always understand his Scottish
idioms, but we more than get
the gist! Business Age, the U.K’s
answer to Forbes Magazine,

just published an interview with him – kilt and all – about
his server technology – what he calls the Internet’s “safe-
ty pin.”

-Editor

1/2 Ad

• VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal54 http://www.JavaDevelopersJournal.com

A Web browser is often considered a very
complex application. In this article I will go
over the design and implementation of a sim-
ple browser offering a somewhat similar look
to Navigator and Internet Explorer. I’ll use an
existing HTML renderer and several classes
of the Swing API. This will give us the oppor-
tunity to review some classes introduced in
the Swing API, such as JPanel, JButton, JLa-
bel, JOptionPane and JProgressBar. Most of
the classes I will use have AWT equivalent
classes, but they all provide additional capa-
bilities. For example, JPanel provides the
option of displaying a border around the
panel. In this article I focus on some of the
Swing classes and how to use the additional
features they provide as compared to the
AWT classes.

A browser such as Navigator is composed
of four panels: a panel including buttons con-
trolling the browser, a panel showing the cur-
rent location and allowing the user to change
this location, an HTML renderer and finally, a
panel showing whether the browser is load-
ing a page or if the cursor is over a link. I will
first describe how to use the HTML renderer
and then go over the three remaining panels
and present how to set up the underlying
look and feel.

HTML Renderer
The tasks of an HTML renderer are basi-

cally to parse and render HTML documents
loaded from the local file system or over
HTTP connections. To implement this simple
browser, I have chosen to use the ICE ren-
derer, which is available at www.icesoft.no.
Other renderers, such as HotJava and HTM-
LEditorKit (which is part of the Swing com-
ponents) and Clue (www.coolclue.com)
could also have been used.

The primary class of interest that handles
HTML documents is the Browser class,
which extends java.awt.Panel through the
Document class. I will use the following meth-
ods from the Browser class to implement our
simple browser:
• gotoLocation(java.lang.String loc) – load a

new HTML document
• goBack() – go to the previous document in

the history list
• goForward() – go to the next document in

the history list
• reload() – reload the current document
• getBackHistory() – get a list of previous

documents in the history list
• getForwardHistory() – get a list of next

documents in the history list
• getParsingProgress() – get the parsing

progress in the current document

In addition, a document fires a Property-
ChangeEvent when important status
changes occur in the document. Property-
ChangeEvents can be monitored by adding a
PropertyChangeListener to the Document.
The following properties are used:
• statusString – The status property is set by

the Document when the mouse is over a
link, and by Applets.

• documentBase – This property indicates
the URL of a document.

• documentTitle – This property indicates
the title of the document.

• parsingProgress – This property returns a
string of the form: “frameName charsRead
totalChars”, where frameName is the name
of the current frame, charsRead is the
number of characters read and totalChars
is the size of the html document (if avail-
able), or -1 if it’s unknown. Parsing is com-
plete when charsRead is equal to
totalChars.

Control Panel
The control panel includes a button to

open a dialog for file or URL selection, buttons
to move forward, backward and reload the
current page, and a button to exit from the
browser. Each button contains an icon and
text. The button’s border is only visible if the
cursor rolls over the button. The icon must
change whether the button is enabled, dis-
abled or if the cursor rolls over it. In addition,
the tool tip text should appear when the cur-
sor stays idle on a button for several seconds.
These buttons should be grouped on the left
of the control panel, while an animated icon
should appear on the right of the panel. Using
the JButton class of the Swing API, imple-

menting such buttons is straightforward.
Since all the buttons must have this common
behavior, I start first by extending the JButton
class by the ControlButton class with a con-
structor that removes the border and focus,
and then aligns the text under the icon:

class ControlButton extends JButton {
ControlButton() {

setBorderPainted(false);
setFocusPainted(false);
setHorizontalTextPosition

(SwingConstants.CENTER);
setVerticalTextPosition(SwingConstants.BOT-

TOM);
}

}

A mouse listener is used to detect
whether the mouse enters or exits a button,
and paints the border if necessary. The set of
icons used is set by the setIcon, setRolloverI-
con and setDisabledIcon methods. The tool
tip text is set by the ToolTipText method.
Whenever, it’s appropriate, the tool tip texts
of the Back and Forward buttons are updated
with the URL of the previous or next page,
respectively.

As noted above, the control panel also
contains an icon reflecting whether or not
the browser is loading a document. To
include an icon in a panel, I use the JLabel
class and its setIcon method. In addition, it’s
also possible to specify the border of a label
with the setBorder method. Subsequent calls
to the setIcon method are used with either a
static or an animated GIF icon. Animated GIF
images are handled automatically and no
additional coding is required.

To select a new URL, the dialog is imple-
mented using the static method showInput-
Dialog of the JOptionPanel class. JOption-
Pane is designed to make it easy to pop up
standard dialog boxes. It includes several
showXXXDialog methods to ask a confirming
question, prompt for some input or to inform
the user. Only a one-line call is necessary to
use these methods:

String result;
result = JOptionPane.showInputDialog("Enter
the URL ");
if (result != null) {

iceBrowser.gotoLocation(result);
}

SWING

Designing a Web Browser
Using Swing classes to create

a better Web browser
by Pascal Ledru

55VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Inprise
www.inprise.com

56 • VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

To complete the implementation of the
control panel, it’s necessary to lay the com-
ponents down correctly. Two internal panels
are used, both of them using FlowLayout.
The panel containing the buttons uses a
LEFT alignment, while the panel containing
the icon uses a RIGHT alignment. These two
panels are then included in another panel
using GridBagLayout. The first panel uses a
WEST alignment, while the second panel
uses an EAST alignment. In addition, a non-
null weightx value is specified to allow com-
ponents to grow within the panel.

Location Panel
The location panel includes a label con-

taining an icon, text and a textfield. The label
is implemented as is described above, except
the default alignment is used. The textfield is
implemented using the JTextField class and a
KeyListener is used to detect characters
typed by the user. Once the ENTER key is
pressed, a new document is loaded. Again,
GridBagLayout is used to lay down the com-
ponents within the panel. A non-null weightx
value is specified to allow the textfield to
grow within the panel.

Link Panel
The link panel includes a label specifying

whether or not the browser is loading a doc-
ument, or if the mouse is over a link. A
progress bar is used to indicate how much of
a document has actually been loaded. The
JLabel class is used to display the label. This
label is an update function of the state of the
browser. The progress bar is implemented by
the JProgressBar class. Three methods of the
JProgressBar class are used: setMinimum,
setMaximum and setValue. They respectively
set the progress bar’s minimum, maximum
and current values. The minimum value is set
to zero while the maximum and current val-
ues are updated when the parsingProgress
property is received. Once again, Grid-
BagLayout is used to allow the label to grow
within the panel.

Putting the Pieces Together
I will now present how properties are han-

dled and how the control, location and link
panels are updated. It’s first necessary to add
a PropertyChangeListener to the browser:

iceBrowser = new Browser();
iceBrowser.addPropertyChangeListener(this);

public void propertyChange(Property-
ChangeEvent ev) {

String prop = ev.getPropertyName();
if (prop.equals("statusString")) {

...
} else if (prop.equals("documentBase")) {

...
} else if (prop.equals("documentTitle")) {

...
} else if (prop.equals("parsingProgress"))

{
...

}
}

A propertyChange method receives
updates from the HTML renderer. If the prop-
erty is statusString, the cursor is updated to a
default cursor or to a hand cursor, whether
the property’s value is an empty string or not.
If the property is documentBase, the textfield
of the location panel is updated with the new
URL. If the property is documentTitle, the
browser’s title is updated with the new title,
the animated icon is displayed, the progress
bar is reset and the tool tip texts of the Back
and Forward buttons are updated. If the prop-
erty is parsingProgress, the progress bar and
the Link panel’s label are updated. When all
the document is loaded, the animated icon is
switched back to a static icon.

To lay down all the panels, BorderLayout
is used, but first an internal panel is used to
group the control and location panels. This
panel, as well as the remaining panel, are
then added to the frame.

Look And Feel
As Swing components do not rely on the

GUI manager of the underlying operating sys-
tem, as AWT does, it is possible to provide a
look and feel different than the one of the
native windowing system. This can be used
by an application to provide a common look
and feel on different windowing systems. For
example, an application can set up a motif
look and feel by the following code:
lnf = “com.sun.java.swing.plaf.motif.Moti-
fLookAndFeel”;
UIManager.setLookAndFeel(lnfName);

The simple browser using the metal look
and feel is shown in Figure 1.

Conclusion
Using the Swing API, it is possible to pain-

lessly implement a user interface that only
requires a major effort using the AWT API. I
have only used a few of the classes provided
by Swing, but Swing also includes advanced
GUI components such as trees and tables. Of
course, Swing does not eliminate AWT; if
some Swing components can be used instead
of their equivalent AWT components, a good
knowledge of the layout managers is still
needed to implement complex user inter-
faces. As I mentioned above, I’ve used the ICE
HTML renderer. To allow the capability of
switching from one look and feel to another,
and to ensure a consistent look and feel
between the scrollbar of the HTML renderer
and the other components, I have used the
version of the renderer implemented with
the Swing API. This version is still under
development but will parse most simple
Web pages. The set of icons was developed
by Dean Jones and they are available at
www.javalobby.org/jfa/projects/icons. I have
borrowed the animated and static icons to
show if a document is being loaded from the
HotJava browser. Finally, it should be
straightforward to extend this simple
browser with capabilities such as keeping a
list of favorite URLs, and setting up the
home page.

About the Author
Pascal Ledru is a software engineer specializing in net-
working applications at Netran Interactive Commerce.
He is also working on his Ph.D. in computer science at
the University of Alabama in Huntsville. Pascal may be
reached at pledru@worldnet.att.net.

pledru@worldnet.att.net

Figure 1: Metal look and feel

58 • VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

In creating the HotScheme interpreter
(JDJ Vol. 4, Issue 1), we decided to employ
functional programming concepts to Java,
our implementation language, whenever it
was practical. Functional programming has
a number of advantages over more tradi-
tional procedural code, which we will enu-
merate below. The common thread uniting
these advantages is an attempt to create
code that’s conceptually transparent.
Employing this functional style directly in
Java allowed us to define many Scheme
functions in Java the same way they would
be written in Scheme itself. We wouldn’t
recommend attempting to program Java in
a completely functional style -- the resulting
Java code would run poorly and appear
bizarre and convoluted to most Java pro-
grammers. But we do feel that many of the
benefits of functional programming can be
brought to Java, if some discernment is
used in when to apply the style.

What Is Functional Programming?
The functional programming style is

characterized by an extensive (sometimes
even exclusive) use of “pure” functions.
Input to pure functions comes only from
their arguments, not on state information
stored in local or global variables. (Of
course, Java does not have global variables
per se, but public static class variables play
essentially the same role.) Pure functions
produce no side effects, such as setting a
counter or a flag, and are called only for
their return value. In the idiom of function-
al programming, procedures that don’t
meet these strict criteria are called pseudo-
functions. The theory of functional pro-
gramming has a firm foundation in the the-
ory of mathematical notation, where cen-
turies of experience have confirmed the
value of a concise, transparent notation for
expressing abstract ideas.

There are six key properties of code writ-
ten in the functional style, which also hold
for mathematical statements in their tradi-
tional form. (This list of properties is based
on Bruce J. MacLennan’s Functional Pro-

gramming, Addison Wesley, 1990.)

1. Value is independent of the evalua-
tion order.

In evaluating a pure function, it doesn’t
matter whether the arguments are evaluat-
ed from left to right, from right to left or
even from the middle out. Since each
expression depends only on inputs and
doesn’t create any side effects, no order
dependencies can ever arise.

2. Expressions can be evaluated in
parallel.

The first property implies that multiple
expressions can even be evaluated at the
same time, on different processors. Since
the final result doesn’t depend on evalua-
tion order, neither the programmer nor the
compiler need to worry about the sort of
complicated dependencies between differ-
ent procedural statements that make paral-
lel computation so notoriously difficult.

3. Referential transparency.
This means that any expression is inde-

pendent of its context. If you see f(7, 12) in
two different places, you can be sure f will
return the same value both times.

4. Absence of side effects.
Fundamentally, this entails avoiding

assignments. Assignments are the “go-tos”
of data. They create order dependence in
code execution, hidden state and nonlocal
relationships between pieces of code.

5. Inputs to an operation are obvious
from the written form.

Because pure functions don’t keep state
or use global variables, all of their input
appears right there in the function call.

6. Effects of an operation are obvious
from the written form.

Since a pure function doesn’t set any
state or produce any other side effects, to
use the return value makes it the direct
argument to another function. For example,

g(f(7, 12), h(1)). It’s clear in this code snip-
pet that f is called to supply g with its first
argument, and h is called to supply it with
its second.

Why Employ It?
Functional programming can aid in the

creation of extremely concise code, which,
once you are familiar with the style, is easi-
er to reason with than procedural code.
Someone unfamiliar with the style might,
when viewing a functional program for the
first time, suspect that the programmer has
been deliberately cryptic. With a great deal
of meaning packed into each line of code,
the density can be intimidating. However,
2,500 years of mathematical history show
that once the language of mathematical
expressions is comprehended, mathemati-
cians can glance at a few symbols and grasp
what those untutored won’t understand in
an hour of verbose explanation. Mastery of
the functional style having been achieved,
economy of expression, which is insepara-
ble from the properties listed above, will
facilitate the comprehension of complex
programs tremendously.

This economy of expression means that
algorithms are expressed more directly in
the functional style than in procedural
code. Because the code isn’t busy main-
taining state and creating side effects, each
expression tends to model directly a step in
the algorithm itself.

C.S. Peirce pointed out that the form of
mathematical expressions is iconic in that
the arrangement of terms in an expression
is a picture, or icon, of their relationship in
our minds (Philosophical Writings of
Peirce, Dover, 1940. (reprinted)). Mathe-
matical expressions are the original “visual
programming,” for these expressions are
diagrams of the logical relationship of their
terms. So it is with functional programming:
the return of a pure function depends only
on what you see when looking at its written
form, namely, its arguments. The use of its
return value is clearly visible from its con-
text, where it will appear as an argument to
some other function. In short, a pure func-
tion has manifest interfaces. Two examples
will illustrate the difference between a pure
function and a pseudofunction in this
regard.

The following is a pure function. The

Employing your functional code directly in Java

by Gene Callahan & Robert Dodson

Clarify Your Code in
the Functional Style

FUNCTIONAL CODING TECHNIQUES

Java DEVELOPER’S Journal

return depends only on the value of the
parameter x.

int succ (int x) { return x + 1; }

The following is a pseudofunction. The
return depends on value of x and the “hid-
den” value of a.

int plusA(int x) { return x + a; }

Feeding the function 7 as an argument
will not always return the same thing. For
you to understand what will happen when
plusA() is called, it’s not enough to look at
the local contexts of the call and the func-
tion definition. You must also hunt through
the code to where “a” is defined, and then
determine where and how its value is set. If
the value of “a” depends on some other
global or state variable, then you can soon
find yourself reading an entire program in
order to understand a single statement.

The manifest interfaces of pure func-
tions allow easier proof of correctness. You
can imagine how having to follow the state
of persistent variables around hundreds of
lines of code adds tremendous complexity
to a formal proof and pressure for the pro-
gram to correctly implement its require-
ments.

This can be expressed more formally by

saying that the syntax graph and the
dataflow graph for a functional language
have identical, treelike structures. Subex-
pressions that communicate data to each
other are always found to be adjacent in the
syntax tree. This is not true with procedur-
al code, as assignments allow nonlocal

communication – an assignment in one
module of a program can have an effect in
an entirely different module when the vari-
able is finally used. Note that encapsulation
does not make this any less true; just
because you’re accessing the variable
through a function rather than directly
doesn’t change the degree of nonlocality.

The absence of state makes functional
programming inherently “thread safe.”
There are no persistent variables to worry
about locking, and therefore no critical
code portions that can’t be entered simul-
taneously by different instances of the
same function. Since no pure function main-
tains state or creates side effects, it is, by
definition, safe to execute as many of them
in parallel as the environment cares to run.

Java has many features that reduce bug
count significantly. It forces you to have
accurate arguments and returns, catches or
throws for all thrown exceptions and so
forth. The absence of pointers eliminates
the source of many bugs in C and C++ pro-
grams. There is also runtime trapping
(array bounds, etc.) so bugs that slip by the
compiler are often found in the first test run
of the program, rather than lurking silently
until a real user hits some peculiar condi-
tion and the program blows up.

Even so, functional programming offers
an entire other level of “bug protection.”

“We do feel that
many of the
benefits of
functional

programming can
be brought

to Java, if some
discernment is used

in when to apply
the style.”

We’ve simplified your decision making process!
Here are your JAVA banner advertising options:

Carmen Gonzalez
Vice President,

JDJ Advertising Sales

“...I finally got my numbers from
our banner....GREAT! We just got
30 downloads.”

– Janusz Haka
Parasoft Corporation
(haka@parasoft.com)

“...We’ve gotten a very significant number of referrals to our site from the
various NetBeans banner links at JavaDevelopersJournal.com. You’ve jumped to
one of our top referring URLs, and that is very important to us...”

– Helena Stolka
Marketing Director, NetBeans, Inc.

(helena.stolka@netbeans.com)“...I’ve been tracking hits
from your site and they are
pouring in!”

– Scott Rill
Marketing Manager,

SnowBound Software
(srill@snowbnd.com)

“Our banner on the JDJ Web site was by far the most
active banner we had. It brought in nearly twice as many
click-throughs as the second most productive banner.”

– Mark Spencer
Marketing Manager, Tidestone Technologies, Inc.

(mspencer@tidestone.com)

We are your only BPA Interactive audited Java advertising resource.
And… we guarantee twice as many click-throughs as they deliver!

Please make
comparisons...

100,000 banner views for $7,900
-or-

100,000 banner views for FREE
Their Cost

Our Cost

Please make
comparisons...

60 • VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

The lack of assignments (in a pure func-
tional program) removes the need to worry
about state, and the possibility of bugs aris-
ing from failing to account for all possible
pseudofunction states disappears. The
inherent “thread safety” also gets rid of
many of the difficulties inherent in debug-
ging threaded programs that are written in
a procedural language.

How to Do It in Java
As we mentioned earlier, we don’t view

functional programming as a panacea, nor
do we recommend its exclusive use, espe-
cially when working in a nonfunctional lan-
guage such as Java. But for those times
when you do want to use the functional
style in Java, we can recommend the fol-
lowing measures:

• Have functional primitives available
early on, then use them in higher-level
functions designed later.

For instance, very early in the project
we implemented Length(), first(), second()

and restl(), all of which operate on a list
argument, and return the length, the first
item, the second item and a list of all items
but the first of that argument, respectively.
We also defined a cons() function to build a
new list from an object and a list.

Once these functions were done, we
would use them frequently. See Listing 1 for
an example of how we used each of these
primitives several times in a fairly small
class.

• Avoid assignments.
Instead of writing:

int f4(a, b, c, d) {
int x = f1(a, b);
int y = f2(c, d);
int z = f3(x, y);
return z;

}
Write:

int f4(a, b, c, d) {
return f3(

f1(a, b),
f2(c, d));

}

You may find some who claim you are
being obscurantist by writing the second
version. However, note that it precisely
illustrates the use of all the arguments and
subcalls in one statement, while the first
version has four times as many lines and
three new, unnecessary variables.

• Use auxiliary functions as another
substitute for assignments.

See Listing 2 for an example.

• Use recursion instead of looping:

public final long Length() throws SchemeEx-
ception

{
// the last object will be #f -- see Length
there!

return 1L + cdr.Length();

Listing 1:
// this is the class that
// implements the Scheme ’map’ command
class Map extends BuiltIn
{

public SchemeObject Apply(SchemeObject args, Environment env)
{

return map_aux(args.first(), args.second(),
(args.Length() > 2) ? (args.restl()).restl() : null,
env);

}
private SchemeObject map_aux(SchemeObject f,

SchemeObject ls, SchemeObject more, Environment env)
{

if(more == null) return map_aux1(f, ls, env);
else return map_aux_more(f, ls, more, env);

}
private SchemeObject map_aux1(SchemeObject f,

SchemeObject ls, Environment env)
{

if(ls.Nullp()) return SchemeObject.False;
else

return SchemeObject.cons(
f.Apply(SchemeObject.cons(ls.first(),
SchemeObject.False),
env),
map_aux1(f, ls.restl(), env));

}
private SchemeObject map_aux_more(SchemeObject f,

SchemeObject ls, SchemeObject more, Environment env)
{

if(ls.Nullp()) return SchemeObject.False;
else

return SchemeObject.cons(
f.Apply(

SchemeObject.cons(
ls.first(),
map_aux(First.car, more, null, env)

),

env),
map_aux_more(f, ls.restl(),

map_aux(Rest.cdr, more, null, env),
env));

}
}

Listing 2:
// This code implements the Scheme "begin" syntax, which
// executes a number of expressions in sequence.
// Syntax: (begin exp1 …)
public final SchemeObject Apply(SchemeObject args,

Environment env)
throws SchemeException

{
return begin_aux(args, args.Length(), env);

}
private final SchemeObject begin_aux(SchemeObject args, int len,

Environment env)
throws SchemeException

{
switch(len)
{

case 0: return False;
case 1: return args.first().Eval(env);
default:

args.first().Eval(env);
// we evaluate the first statement, then call begin_aux
// recursively on the rest of the statements

return begin_aux(args.restl(), len - 1, env);
}

}

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

61VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journal

}

Can we do functional programming in
Java and still take advantage of its object-
oriented features? We’ll examine this ques-
tion in terms of polymorphism, inheritance,
encapsulation, and the use of class
libraries.

Polymorphism is a great aid in writing
functional Java. Many of the core functions
in the functional style (those for forming
and pulling apart lists, for mapping func-
tions over lists and for searching lists) can
accept many data types as arguments and
may return an object of a different type,
depending on what is passed to them. Poly-
morphism obviates the need to create ver-
sions of these functions for all the different
permutations of argument and return type.

Inheritance doesn’t lose any of its
applicability in “functional Java.” You can
still subclass and override methods in sub-
classes as long as the new methods are
pure functions; then you haven’t lost any
purity of functional style.

Encapsulation becomes less important
in functional programming, since there are
fewer state variables and less to encapsu-
late. However, when you break the func-
tional mold and do employ state variables
for performance or code simplicity, encap-
sulation plays an important role in hiding

and localizing the nonfunctional parts of
the program.

The standard Java library is quite exten-
sive and is partly responsible for the lan-
guage’s success. It and other third-party
libraries can be used in one of two ways in
a (mostly) functional Java program. The
first possibility is to encapsulate them in a
functional layer, then use that layer for the
rest of the program. The other is simply to
accept them as being among the nonfunc-
tional parts of the program wherever they
need to be used.

Results and Trade-offs
Using the functional style may result in

some performance loss in some situations,
resulting from the increased number of
function calls and recursion. In other cases
performance may increase because of
fewer temporary assignments.

Code may be hard to understand for
those unfamiliar with style, a difficulty that
is exacerbated by the fact that Java wasn’t
designed as a functional language. In a lan-
guage like Scheme, the notation:

(print (eval (make term START global_env)))

is easier to decipher than the OOP ver-
sion:

SchemeObject.make(term, SchemeObject.START,
global_env).Eval(global_env).Print();

However, we were generally satisfied
using the functional style in the HotScheme
interpreter. We were able to implement new
Scheme functions and even syntactic con-
structs with remarkably few lines of code,
and they were almost always correct the
first time we wrote them. Also, to code in
this style, we had to think like a Scheme
interpreter, so there was a unity of concep-
tualization between the application and the
code that implemented it.

About the Authors
Gene Callahan is the president of St. George Tech-
nologies, where he designs and implements Internet
projects. He has written for several national and
international industry publications. He can be
reached at gcallah@erols.com

Robert Dodson is a software developer who writes
options trading software in Java and C++ for OTA
Limited Partnership. Previous projects include weather
analysis software, tactical programs for Navy sub-
marines, and code for electronic shelf labels. He can
be reached at rad@ox.com.

gcallah@erols.com rad@ox.com

Either way, your success depends on who your
strategic business partners are. For your partners
and the Java industry, your product looks as good
as your display ad in Java Developer’s Journal!

We know how
to create
success
stories!

Are You a Java Start-up with a
Shoestring Advertising Budget?
-or-
Are You a Software Giant with a
Shoestring Advertising Budget?

PowerCerv Corporation (Nasdaq: PCRV)
On their way to a successful IPO, this two-year consecutive
SYS-CON advertising partner did not miss advertising in
one single issue!

Our 4th Annual
JavaOne

Special Issue
is coming soon!

If you attended any of the
three previous JavaOne

Conferences you probably
already know the

unmatched exposure
that we offer.

You can’t afford to miss JDJ’s
May, June and July Issues.

Take our word for it!

Call today 914 735-0300
(carmen@sys-con.com)

KL Group JProbe Adds
Memory Debugger to
Performance Profiler
(Toronto, Ont.) – KL Group Inc.,
a provider of Java components
and advanced development
tools, will ship its advanced
Java performance profiler and
memory debugger, JProbe 2.0,
this quarter. The profiling tool

makes it easy to
identify and
eliminate perfor-
mance bottle-

necks and memory leaks in Java
code, and provides heap analy-
sis tools that help find memory
leaks to reduce development
time and improve code quality.
JProbe profiles applications
written in JDK 1.1 or Java 2 soft-
ware for Windows and Solaris.

JProbe technology leverages
the Java Virtual Machine to cap-
ture all objects created and any
method calls performed by the
Java code being profiled. The
profiler reports application per-
formance on a per-method or
per-line basis, speeding the
process of performance tuning.
The memory debugger accuracy
combined with graphical analy-
sis tools makes a powerful and
easy-to-use Java performance
profiling and exploration tool.

JProbe 2.0 will be generally
available this quarter. The pro-
filer will start at $499 for a sin-
gle developer license. JProbe
Profiler and KL Group’s 100%
Pure JClass JavaBeans are
available from qualified
resellers and their Web site at
www.klgroup.com.

Optimizeit 3.0 Professional
Ships
(Sunnyvale, CA) – Intuitive Sys-
tems, Inc., is shipping Opti-
mizeit 3.0 Professional, the
Java technology-based perfor-
mance tool that allows devel-
opers to test and improve the
performance of most Java
applications, applets, servlets
and JavaBeans.

Optimizeit Professional 3.0
is available at $449 for Win-
dows 95 and 98 platforms, and
will soon be available for Sun’s
Solaris operating environment.

For additional information,
call 408 245-8540 or visit
www.optimizeit.com.

Objective Toolkit for ATL
from Rogue Wave
(Research Triangle
Park, NC) – Rogue Wave Soft-
ware, Inc., has added to its
Stingray product line with
Objective Toolkit for ATL, which
extends Microsoft’s Active Tem-
plate Library (ATL). ATL enables
C++ developers to more easily
develop reusable COM objects.
Objective Toolkit for ATL
enhances that ability by maxi-
mizing code reuse through GUI,
COM and productivity enhance-
ments in familiar ATL-like imple-
mentations, increasing the abili-
ty to create solid, feature-rich
components for the enterprise.

For more information call
800 487-3217, e-mail

sales@rogue-
wave.com or visit the

company Web site at
/www.roguewave.com.

JHL Computer
Consultants Sign
Agreement with
Progress Software
(Fort Lauderdale, FL) – JHL
Computer Consultants, a train-
ing and development company,
and Progress Software Corpora-
tion have signed a training
agreement for Progress Apptivi-
ty version 3, a Java application
server with an integrated devel-
opment. Apptivity enables IT
and ISV organizations to rapidly
deliver new and enhanced
applications for intranets,
extranets and the Internet. JHL
will also provide development
services in Apptivity.

The Apptivity application
server provides a secure and
scalable CORBA-based server
architecture that supports
Enterprise JavaBeans. Apptivi-
ty’s SmartAdapter framework
allows applications to access
external data sources through
a standard data interface
model.

For details call Progress
Software at 800 477-6473 or
visit www.progress.com.

Sun Certifies Architects
To Build Mission-critical
Applications Using Java
(Palo Alto, CA) – With the use
of the Java programming lan-
guage on the rise for mission-
critical and business-critical
applications, Sun is announc-
ing the release of the Java
Technology Architecture Plan-
ning and Design courseware to
train developers to use Java to
plan, design and implement
solutions for the enterprise.
Sun is also offering an exam to
certify the architects.

The new certification vali-
dates the knowledge architects
need to advise clients on the use
of Java applications, to identify
major architectural issues, and
recommend techniques to
increase security and perfor-
mance of their Java applications.

For more information visit
http://suned.sun.com.

KL Group Appoints New
Director of Business
Development
(Somewhere, CA)
– Lee Garrison
has been promot-
ed to the posi-
tion of Director
of Business
Development for KL Group.

(Burlington, MA) – Novera
Software Inc. has integrated
jBusiness 4 with the Silver-
Stream application platform.
Customers can now extend
the Novera and SilverStream
environments by
integrating Novera’s
Enterprise Business
Objects into Silver-
Stream solutions.

jBusiness is an
application and
management framework that
allows customers to create
Enterprise Business Objects
as the foundation for distrib-
uted enterprise applications.

These objects encapsulate
enterprise data from legacy
systems into reusable soft-
ware objects based on CORBA
and Enterprise JavaBeans
standards. The jBusiness Man-

agement Server also
provides end-to-end
management of appli-
cations built with Sil-
verStream that
access Enterprise
Business Objects,

including configuration, secu-
rity and monitoring.

For more information call
888 NOVERA1 or visit
www.novera.com.

Novera Announces
jBusiness for SilverStream

(Scotts Valley, CA.) –
Inprise Corporation, a
provider of enterprise inte-
gration software and services,
has signed a worldwide, mul-
timillion-dollar licensing
agreement with Oracle Corpo-
ration. Under the terms of the
multiyear agreement, Oracle
has selected Inprise’s VisiBro-

ker as one of its
worldwide standards for
CORBA object request broker
(ORB) technology. To date,
VisiBroker has been integrat-
ed into Oracle8i, Oracle
Application Server and other
Oracle products.

For more information visit
www.inprise.com.

Oracle Expands Relationship
with Inprise Corporation

62 • VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

63VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

64 Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 4 1999

Employment Ad
www.omg.org

65VOLUME: 4 ISSUE: 4 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Employment Ad
www.omg.org

66 • VOLUME: 4 ISSUE: 4 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Most of us think of Web applications as end-user oriented systems, bridging the gap
between a data user and data. Indeed, many of the currencies of Web application develop-
ment are oriented towards this goal.

The Supply Chain as seen through a Web interface
One important evolutionary phase in a new paradigm shift is its use across companies

in a way that allows cross-company usage of data and workflow. The Web application and
Java paradigm shift is no exception.

In the above example, information flows
from suppliers (independent of each other)
to a manufacturer, and vice-versa. The
same holds true between the manufacturer
and the customer.

Of course, in the real world a manufac-
turer will have multiple customers and mul-
tiple suppliers so this picture can get very
crowded. The supply chain can also
become much more challenging to manage
and very deep as suppliers have sub-sup-
pliers and sub-manufacturers. Thus the
supplier is itself a customer in another chain!

Now what if we put a Java Application Server at each of the supply chain nodes and
attached it to the information and workflow sources? What if these Application Servers
provided supply chain information across secure and regular Web connections?
Many interesting possibilities can emerge.

The Java and open platform technology behind such a scheme is relatively involved.
Beyond having a Java Application Server at each distinct supply chain node, the server
needs to to deal with the necessary firewalls separating it from the next node in the chain.
Remember, these companies are not affiliated or part of a conglomerate. They are simply
doing business with each other, and security is very important.

Two distinct forms of interface are needed for transferring data between the chain – a
human interface and a computer interface. The human interface is best represented via
HTML or Java client, while the computer interface is best represented via XML.

One efficient way of achieving such a view is to transfer all necessary data via XML to a
central “host” and bounce back that information as needed in either XML or viewable form.

In this scheme, each of the suppliers, the manufacturer or the customer can get impor-
tant supply chain information back from the so-called “supply chain data host.”
The customer can get data on the backlog of the manufacturer on a particular product, the
part availability for part of a product being manufactured, etc.

Java and Java Open Appservers in combination with HTML, SSL and XML combine to
make this possible across the Web as well as private networks.

Web Application and
the Supply Chain

by Java George

Java George is George Kassabgi, director of
developer relations for Progress Software’s
Apptivity Product Unit. You can e-mail him at
george@apptivity.com.

THE GRIND

????????

??????????

?????????

?????????

?????????

????????

???????

george@apptivity.com

Customer

Manufacturer

Supplier (a) Supplier (b)

XML

Customer

Manufacturer

Supplier (a) Supplier (b)

XML

XML

XML
HTML

Supply Chain
Data Services

Host

http://www.JavaDevelopersJournal.com 67Java DEVELOPER’S JournalVOLUME: 4 ISSUE:1 1999 •

68 Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

KL Group
www.klg.com

• VOLUME: 4 ISSUE: 4 1999

